6,278 research outputs found

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Avoiding Quantum Chaos in Quantum Computation

    Full text link
    We study a one-dimensional chain of nuclear 1/21/2-spins in an external time-dependent magnetic field. This model is considered as a possible candidate for experimental realization of quantum computation. According to the general theory of interacting particles, one of the most dangerous effects is quantum chaos which can destroy the stability of quantum operations. According to the standard viewpoint, the threshold for the onset of quantum chaos due to an interaction between spins (qubits) strongly decreases with an increase of the number of qubits. Contrary to this opinion, we show that the presence of a magnetic field gradient helps to avoid quantum chaos which turns out to disappear with an increase of the number of qubits. We give analytical estimates which explain this effect, together with numerical data supportingComment: RevTex, 5 pages including 3 eps-figure

    Doppler cooling with coherent trains of laser pulses and tunable "velocity comb"

    Full text link
    We explore the possibility of decelerating and Doppler cooling of an ensemble of two-level atoms by a coherent train of short, non-overlapping laser pulses. We develop a simple analytical model for dynamics of a two-level system driven by the resulting frequency comb field. We find that the effective scattering force mimics the underlying frequency comb structure. The force pattern depends strongly on the ratio of the atomic lifetime to the repetition time and pulse area. For example, in the limit of short lifetimes, the frequency peaks of the optical force wash out. We show that laser cooling with pulse trains results in a "velocity comb", a series of narrow peaks in the velocity space

    Dynamical Stability of an Ion in a Linear Trap as a Solid-State Problem of Electron Localization

    Get PDF
    When an ion confined in a linear ion trap interacts with a coherent laser field, the internal degrees of freedom, related to the electron transitions, couple to the vibrational degree of freedom of the ion. As a result of this interaction, quantum dynamics of the vibrational degree of freedom becomes complicated, and in some ranges of parameters even chaotic. We analyze the vibrational ion dynamics using a formal analogy with the solid-state problem of electron localization. In particular, we show how the resonant approximation used in analysis of the ion dynamics, leads to a transition from a two-dimensional (2D) to a one-dimensional problem (1D) of electron localization. The localization length in the solid-state problem is estimated in cases of weak and strong interaction between the cites of the 2D cell by using the methods of resonance perturbation theory, common in analysis of 1D time-dependent dynamical systems.Comment: 18 pages RevTe

    Torsion free groups with indecomposable holonomy group I

    Get PDF
    We study the torsion free generalized crystallographic groups with the indecomposable holonomy group which is isomorphic to either a cyclic group of order ps{p^s} or a direct product of two cyclic groups of order p{p}.Comment: 22 pages, AMS-Te

    Qubit rotation and Berry Phase

    Full text link
    A quantized fermion can be represented by a scalar particle encircling a magnetic flux line. It has the spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubit inserting spin-echo to one of them results the change of Berry phase that can be considered as a measure of entanglement. Some effort is given to study the effect of noise on the Berry phase of spinor and their entangled states.Comment: 12 page

    Realistic theory of electromagnetically-induced transparency and slow light in a hot vapor of atoms undergoing collisions

    Full text link
    We present a realistic theoretical treatment of a three-level Λ\Lambda system in a hot atomic vapor interacting with a coupling and a probe field of arbitrary strengths, leading to electromagnetically-induced transparency and slow light under the two-photon resonance condition. We take into account all the relevant decoherence processes including col5Blisions. Velocity-changing collisions (VCCs) are modeled in the strong collision limit effectively, which helps in achieving optical pumping by the coupling beam across the entire Doppler profile. The steady-state expressions for the atomic density-matrix elements are numerically evaluated to yield the experimentally measured response characteristics. The predictions, taking into account a dynamic rate of influx of atoms in the two lower levels of the Λ\Lambda, are in excellent agreement with the reported experimental results for 4^4He*. The role played by the VCC parameter is seen to be distinct from that by the transit time or Raman coherence decay rate
    corecore