115 research outputs found

    The quasiclassical theory of the Dirac equation with a scalar-vector interaction and its applications in the theory of heavy-light mesons

    Full text link
    We construct a relativistic potential quark model of DD, DsD_s, BB, and BsB_s mesons in which the light quark motion is described by the Dirac equation with a scalar-vector interaction and the heavy quark is considered a local source of the gluon field. The effective interquark interaction is described by a combination of the perturbative one-gluon exchange potential VCoul(r)=ξ/rV_{\mathrm{Coul}}(r)=-\xi/r and the long-range Lorentz-scalar and Lorentz-vector linear potentials Sl.r.(r)=(1λ)(σr+V0)S_{\mathrm{l.r.}}(r)=(1-\lambda)(\sigma r+V_0) and Vl.r.(r)=λ(σr+V0)V_{\mathrm{l.r.}}(r)=\lambda(\sigma r+V_0), where 0λ<1/20\leqslant\lambda<1/2. Within the quasiclassical approximation, we obtain simple asymptotic formulas for the energy and mass spectra and for the mean radii of DD, DsD_s, BB, and BsB_s mesons, which ensure a high accuracy of calculations even for states with the radial quantum number nr1n_r\sim 1. We show that the fine structure of P-wave states in heavy-light mesons is primarily sensitive to the choice of two parameters: the strong-coupling constant αs\alpha_s and the coefficient λ\lambda of mixing of the long-range scalar and vector potentials Sl.r.(r)S_{\mathrm{l.r.}}(r) and Vl.r.(r)V_{\mathrm{l.r.}}(r). The quasiclassical formulas for asymptotic coefficients of wave function at zero and infinity are obtained.Comment: 22 pages, 6 figure

    Науково-практичний коментар Закону України «Про запобігання корупції» [станом на 1 лип. 2018 р.]

    Get PDF
    Науково-практичний коментар Закону України «Про запобігання корупції»: станом на 1 лип. 2018 р. / [А. В. Андрєєв, І. Л. Антипова, С. В. Банах та ін.], за заг. ред. Журавльова Д. В. – Київ: Видав. дім «Професіонал», 2018. – 512 с.Коментар розрахований на осіб, уповноважених на виконання функцій держави або місцевого самоврядування та прирівняних до них осіб, які є суб’єктами, на яких поширюється дія Закону України «Про запобігання корупції», на уповноважених осіб, відповідальних за реалізацію антикорупційних програм, суддів, прокурорів, слідчих, детективів, адвокатів, а також на студентів вищих учбових закладів, які готують фахівців в галузі права

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP\delta_{CP}. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter.Comment: Contribution to Snowmass 202

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Full text link
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model.Comment: Contribution to Snowmass 202

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    Get PDF
    The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.Comment: 39 pages, 19 figure
    corecore