219 research outputs found
Phase behavior and solubility of components of the binary butyric acid – polyethylene glycol-1500 system
A critical review of the literature on the methods of concentration and extraction of biobutyric acid from fermentation solutions has been carried out. The best results of these processes are achieved by combining extraction with salting. It is proposed to use polyethylene glycols with diff erent molecular weights as non-fl ammable and environmentally friendly extractants. The purpose of the study was to identify the phase behavior of mixtures of components, study solubility and construct a phase diagram of the previously unexplored double system butyric acid – PEG-1500 in the range −10.0–50.0°C. The transition temperatures of phase states in mixtures of components of the dual system butyric acid (BA) – polyethylene glycol-1500 (PEG-1500) in the temperature range −10–50°C have been found by the visual-polythermal method. The phase diagram above the eutectic line shows a large crystallization fi eld of PEG-1500, while the crystallization fi eld of BA has very small dimensions. It has been established for the fi rst time that eutectic equilibrium is carried out in the system at −6.6°C, the solid phases of which are crystals of BA and PEG-1500, the composition of the liquid phase of eutectic (3.20 wt.% BA) has been determined. A method for concentrating BA and separating the components of the investigated system based on the crystallization of PEG-1500 during cooling of mixtures is proposed
Vibrational instability, two-level systems and Boson peak in glasses
We show that the same physical mechanism is fundamental for two seemingly
different phenomena such as the formation of two-level systems in glasses and
the Boson peak in the reduced density of low-frequency vibrational states
g(w)/w^2. This mechanism is the vibrational instability of weakly interacting
harmonic modes. Below some frequency w_c << w_0 (where w_0 is of the order of
Debye frequency) the instability, controlled by the anharmonicity, creates a
new stable universal spectrum of harmonic vibrations with a Boson peak feature
as well as double-well potentials with a wide distribution of barrier heights.
Both are determined by the strength of the interaction I ~ w_c between the
oscillators. Our theory predicts in a natural way a small value for the
important dimensionless parameter C ~ 10^{-4} for two-level systems in glasses.
We show that C ~ I^{-3} and decreases with increasing of the interaction
strength I. We show that the number of active two-level systems is very small,
less than one per ten million of oscillators, in a good agreement with
experiment. Within the unified approach developed in the present paper the
density of the tunneling states and the density of vibrational states at the
Boson peak frequency are interrelated.Comment: 28 pages, 3 figure
Effects of Electron-Electron and Electron-Phonon Interactions in Weakly Disordered Conductors and Heterostuctures
We investigate quantum corrections to the conductivity due to the
interference of electron-electron (electron-phonon) scattering and elastic
electron scattering in weakly disordered conductors. The electron-electron
interaction results in a negative -correction in a 3D conductor. In
a quasi-two-dimensional conductor, ( is the thickness, is
the Fermi velocity), with 3D electron spectrum this correction is linear in
temperature and differs from that for 2D electrons (G. Zala et. al., Phys.
Rev.B {\bf 64}, 214204 (2001)) by a numerical factor. In a
quasi-one-dimensional conductor, temperature-dependent correction is
proportional to . The electron interaction via exchange of virtual phonons
also gives -correction. The contribution of thermal phonons interacting
with electrons via the screened deformation potential results in -term and
via unscreened deformation potential results in -term. The interference
contributions dominate over pure electron-phonon scattering in a wide
temperature range, which extends with increasing disorder.Comment: 6 pages, 2figure
Hard loss of stability in Painlev\'e-2 equation
A special asymptotic solution of the Painlev\'e-2 equation with small
parameter is studied. This solution has a critical point corresponding to
a bifurcation phenomenon. When the constructed solution varies slowly
and when the solution oscillates very fast. We investigate the
transitional layer in detail and obtain a smooth asymptotic solution, using a
sequence of scaling and matching procedures
Asymptotics of Eigenvalues and Eigenfunctions for the Laplace Operator in a Domain with Oscillating Boundary. Multiple Eigenvalue Case
We study the asymptotic behavior of the solutions of a spectral problem for
the Laplacian in a domain with rapidly oscillating boundary. We consider the
case where the eigenvalue of the limit problem is multiple. We construct the
leading terms of the asymptotic expansions for the eigenelements and verify the
asymptotics
Bosonic Excitations in Random Media
We consider classical normal modes and non-interacting bosonic excitations in
disordered systems. We emphasise generic aspects of such problems and parallels
with disordered, non-interacting systems of fermions, and discuss in particular
the relevance for bosonic excitations of symmetry classes known in the
fermionic context. We also stress important differences between bosonic and
fermionic problems. One of these follows from the fact that ground state
stability of a system requires all bosonic excitation energy levels to be
positive, while stability in systems of non-interacting fermions is ensured by
the exclusion principle, whatever the single-particle energies. As a
consequence, simple models of uncorrelated disorder are less useful for bosonic
systems than for fermionic ones, and it is generally important to study the
excitation spectrum in conjunction with the problem of constructing a
disorder-dependent ground state: we show how a mapping to an operator with
chiral symmetry provides a useful tool for doing this. A second difference
involves the distinction for bosonic systems between excitations which are
Goldstone modes and those which are not. In the case of Goldstone modes we
review established results illustrating the fact that disorder decouples from
excitations in the low frequency limit, above a critical dimension , which
in different circumstances takes the values and . For bosonic
excitations which are not Goldstone modes, we argue that an excitation density
varying with frequency as is a universal
feature in systems with ground states that depend on the disorder realisation.
We illustrate our conclusions with extensive analytical and some numerical
calculations for a variety of models in one dimension
Anharmonicity, vibrational instability and Boson peak in glasses
We show that a {\em vibrational instability} of the spectrum of weakly
interacting quasi-local harmonic modes creates the maximum in the inelastic
scattering intensity in glasses, the Boson peak. The instability, limited by
anharmonicity, causes a complete reconstruction of the vibrational density of
states (DOS) below some frequency , proportional to the strength of
interaction. The DOS of the new {\em harmonic modes} is independent of the
actual value of the anharmonicity. It is a universal function of frequency
depending on a single parameter -- the Boson peak frequency, which
is a function of interaction strength. The excess of the DOS over the Debye
value is at low frequencies and linear in in the
interval . Our results are in an excellent
agreement with recent experimental studies.Comment: LaTeX, 8 pages, 6 figure
Prediction of inter-particle adhesion force from surface energy and surface roughness
Fine powder flow is a topic of great interest to industry, in particular for the pharmaceutical industry; a major concern being their poor flow behavior due to high cohesion. In this study, cohesion reduction, produced via surface modification, at the particle scale as well as bulk scale is addressed. The adhesion force model of Derjaguin-Muller-Toporov (DMT) was utilized to quantify the inter-particle adhesion force of both pure and surface modified fine aluminum powders (∼8 μm in size). Inverse Gas Chromatography was utilized for the determination of surface energy of the samples, and Atomic Force Microscopy was utilized to evaluate surface roughness of the powders. Surface modification of the original aluminum powders was done for the purpose of reduction in cohesiveness and improvement in flowability, employing either silane surface treatment or dry mechanical coating of nano-particles on the surface of original powders. For selected samples, the AFM was utilized for direct evaluation of the particle pull-off force. The results indicated that surface modification reduced the surface energy and altered the surface nano-roughness, resulting in drastic reduction of the inter-particle adhesion force. The particle bond number values were computed based on either the inter-particle adhesion force from the DMT model or the inter-particle pull-off force obtained from direct AFM measurements. Surface modification resulted in two to three fold reductions in the Bond number. In order to examine the influence of the particle scale property such as the Bond number on the bulk-scale flow characterization, Angle of Repose measurements were done and showed good qualitative agreements with the Bond number and acid/base surface characteristics of the powders. The results indicate a promising method that may be used to predict flow behavior of original (cohesive) and surface modified (previously cohesive) powders utilizing very small samples
Voronoi-Delaunay analysis of normal modes in a simple model glass
We combine a conventional harmonic analysis of vibrations in a one-atomic
model glass of soft spheres with a Voronoi-Delaunay geometrical analysis of the
structure. ``Structure potentials'' (tetragonality, sphericity or perfectness)
are introduced to describe the shape of the local atomic configurations
(Delaunay simplices) as function of the atomic coordinates. Apart from the
highest and lowest frequencies the amplitude weighted ``structure potential''
varies only little with frequency. The movement of atoms in soft modes causes
transitions between different ``perfect'' realizations of local structure. As
for the potential energy a dynamic matrix can be defined for the ``structure
potential''. Its expectation value with respect to the vibrational modes
increases nearly linearly with frequency and shows a clear indication of the
boson peak. The structure eigenvectors of this dynamical matrix are strongly
correlated to the vibrational ones. Four subgroups of modes can be
distinguished
Piezoelectric effect in non-uniform strained carbon nanotubes
Экспериментально установлено, что неравномерно деформированные углеродные нанотрубки (УНТ) обладают поверхностным потенциалом, значение которого зависит от величины деформации. Оценено значение пьезоэлектрического коэффициента УНТ, которое составило 0,107±0,032 Кл/м2.We have experimentally established that non-uniformly strained carbon nanotubes have a surface potential the value of which depends on the magnitude of the deformation. The value of the piezoelectric coefficient of car on nanotu es was estimated to e 0.107 ± 0.032 C/m2.Работа выполнена при финансовой поддержке РФФИ (проекты № 16-29-14023 офи_м и №16-37-00101 мол_а)
- …