418 research outputs found

    Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale

    Full text link
    Fluorescent defects in non-cytotoxic diamond nanoparticles are candidates for qubits in quantum computing, optical labels in biomedical imaging and sensors in magnetometry. For each application these defects need to be optically and thermodynamically stable, and included in individual particles at suitable concentrations (singly or in large numbers). In this letter, we combine simulations, theory and experiment to provide the first comprehensive and generic prediction of the size, temperature and nitrogen-concentration dependent stability of optically active NV defects in nanodiamonds.Comment: Published in Nano Letters August 2009 24 pages, 6 figure

    A study of CP violation in the decays B±→[K+K-π+π-]Dh± (h= K, π) and B±→[π+π-π+π-]Dh±

    Get PDF
    The first study of CP violation in the decay mode B±→[K+K-π+π-]Dh± , with h= K, π , is presented, exploiting a data sample of proton–proton collisions collected by the LHCb experiment that corresponds to an integrated luminosity of 9 \,fb - 1 . The analysis is performed in bins of phase space, which are optimised for sensitivity to local CP asymmetries. CP -violating observables that are sensitive to the angle γ of the Unitarity Triangle are determined. The analysis requires external information on charm-decay parameters, which are currently taken from an amplitude analysis of LHCb data, but can be updated in the future when direct measurements become available. Measurements are also performed of phase-space integrated observables for B±→[K+K-π+π-]Dh± and B±→[π+π-π+π-]Dh± decays

    Measurement of antiproton production from antihyperon decays in pHe collisions at √sNN=110GeV

    Get PDF
    The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110GeV\!/c . The dominant antihyperon contribution, namely Λ¯ → p¯ π+ decays from promptly produced Λ¯ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models

    Measurement of τL using the Bs0 →J/ψη decay mode

    Get PDF
    Using a proton–proton collision data sample collected by the LHCb detector and corresponding to an integrated luminosity of 5.7fb-1 , the lifetime of the light Bs0 mass eigenstate, τL , is measured using the Bs0→J/ψη decay mode to be τL=1.445±0.016(stat)±0.008(syst)ps. A combination of this result with a previous LHCb analysis using an independent dataset corresponding to 3 fb - 1 of integrated luminosity gives τL=1.452±0.014±0.007±0.002ps, where the first uncertainty is statistical, the second due to the uncorrelated part of the systematic uncertainty and the third due to the correlated part of the systematic uncertainty

    Measurement of the CKM angle γ\gamma in the B0DK0B^0 \to DK^{*0} channel using self-conjugate DKS0h+hD \to K_S^0 h^+ h^- decays

    Full text link
    A model-independent study of CP violation in B0DK0B^0 \to DK^{*0} decays is presented using data corresponding to an integrated luminosity of 9fb1^{-1} collected by the LHCb experiment at centre-of-mass energies of s=7,8\sqrt{s}=7, \, 8 and 1313TeV. The CKM angle γ\gamma is determined by examining the distributions of signal decays in phase-space bins of the self-conjugate DKS0h+hD \to K_S^0 h^+ h^- decays, where h=π,Kh = \pi, K. Observables related to CP violation are measured and the angle γ\gamma is determined to be γ=(4918+23)\gamma=(49^{+ 23}_{-18})^\circ. Measurements of the amplitude ratio and strong-phase difference between the favoured and suppressed B0B^0 decays are also presented.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-009.html (LHCb public pages

    Observation of Cabibbo-suppressed two-body hadronic decays and precision mass measurement of the Ωc0\Omega_{c}^{0} baryon

    Full text link
    The first observation of the singly Cabibbo-suppressed Ωc0ΩK+\Omega_{c}^{0}\to\Omega^{-}K^{+} and Ωc0Ξπ+\Omega_{c}^{0}\to\Xi^{-}\pi^{+} decays is reported, using proton-proton collision data at a centre-of-mass energy of 13TeV13\,{\rm TeV}, corresponding to an integrated luminosity of 5.4fb15.4\,{\rm fb}^{-1}, collected with the LHCb detector between 2016 and 2018. The branching fraction ratios are measured to be B(Ωc0ΩK+)B(Ωc0Ωπ+)=0.0608±0.0051(stat)±0.0040(syst)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}K^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.0608\pm0.0051({\rm stat})\pm 0.0040({\rm syst}), B(Ωc0Ξπ+)B(Ωc0Ωπ+)=0.1581±0.0087(stat)±0.0043(syst)±0.0016(ext)\frac{\mathcal{B}(\Omega_{c}^{0}\to\Xi^{-}\pi^{+})}{\mathcal{B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})}=0.1581\pm0.0087({\rm stat})\pm0.0043({\rm syst})\pm0.0016({\rm ext}). In addition, using the Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} decay channel, the Ωc0\Omega_{c}^{0} baryon mass is measured to be M(Ωc0)=2695.28±0.07(stat)±0.27(syst)±0.30(ext)MeV/c2M(\Omega_{c}^{0})=2695.28\pm0.07({\rm stat})\pm0.27({\rm syst})\pm0.30({\rm ext})\,{\rm MeV}/c^{2}, improving the precision of the previous world average by a factor of four.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-011.html (LHCb public pages

    Measurement of ZZ boson production cross-section in pppp collisions at s=5.02\sqrt{s} = 5.02 TeV

    Full text link
    The first measurement of the ZZ boson production cross-section at centre-of-mass energy s=5.02\sqrt{s} = 5.02\,TeV in the forward region is reported, using pppp collision data collected by the LHCb experiment in year 2017, corresponding to an integrated luminosity of 100±2pb1100 \pm 2\,\rm{pb^{-1}}. The production cross-section is measured for final-state muons in the pseudorapidity range 2.020GeV/c2.0 20\,\rm{GeV/}\it{c}. The integrated cross-section is determined to be σZμ+μ=39.6±0.7(stat)±0.6(syst)±0.8(lumi) pb \sigma_{Z \rightarrow \mu^{+}\mu^{-}} = 39.6 \pm 0.7\,(\rm{stat}) \pm 0.6\,(\rm{syst}) \pm 0.8\,(\rm{lumi}) \ \rm{pb} for the di-muon invariant mass in the range 60<Mμμ<120GeV/c260<M_{\mu\mu}<120\,\rm{GeV/}\it{c^{2}}. This result and the differential cross-section results are in good agreement with theoretical predictions at next-to-next-to-leading order in the strong coupling. Based on a previous LHCb measurement of the ZZ boson production cross-section in ppPb collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV, the nuclear modification factor RpPbR_{p\rm{Pb}} is measured for the first time at this energy. The measured values are 1.20.3+0.5(stat)±0.1(syst)1.2^{+0.5}_{-0.3}\,(\rm{stat}) \pm 0.1\,(\rm{syst}) in the forward region (1.53<yμ<4.031.53<y^*_{\mu}<4.03) and 3.60.9+1.6(stat)±0.2(syst)3.6^{+1.6}_{-0.9}\,(\rm{stat}) \pm 0.2\,(\rm{syst}) in the backward region (4.97<yμ<2.47-4.97<y^*_{\mu}<-2.47), where yμy^*_{\mu} represents the muon rapidity in the centre-of-mass frame.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-010.html (LHCb public pages

    Studies of η\eta and η\eta' production in pppp and ppPb collisions

    Full text link
    The production of η\eta and η\eta' mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.025.02 and 13 TeV13~{\rm TeV}, and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV8.16~{\rm TeV}. The studies are performed in center-of-mass rapidity regions 2.5<yc.m.<3.52.5<y_{\rm c.m.}<3.5 (forward rapidity) and 4.0<yc.m.<3.0-4.0<y_{\rm c.m.}<-3.0 (backward rapidity) defined relative to the proton beam direction. The η\eta and η\eta' production cross sections are measured differentially as a function of transverse momentum for 1.5<pT<10 GeV1.5<p_{\rm T}<10~{\rm GeV} and 3<pT<10 GeV3<p_{\rm T}<10~{\rm GeV}, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for η\eta and η\eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of η\eta mesons are also used to calculate η/π0\eta/\pi^0 cross section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η\eta and η\eta' meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb public pages
    corecore