92 research outputs found

    Absolute Continuity Theorem for Random Dynamical Systems on RdR^d

    Full text link
    In this article we provide a proof of the so called absolute continuity theorem for random dynamical systems on RdR^d which have an invariant probability measure. First we present the construction of local stable manifolds in this case. Then the absolute continuity theorem basically states that for any two transversal manifolds to the family of local stable manifolds the induced Lebesgue measures on these transversal manifolds are absolutely continuous under the map that transports every point on the first manifold along the local stable manifold to the second manifold, the so-called Poincar\'e map or holonomy map. In contrast to known results, we have to deal with the non-compactness of the state space and the randomness of the random dynamical system.Comment: 46 page

    A simple piston problem in one dimension

    Full text link
    We study a heavy piston that separates finitely many ideal gas particles moving inside a one-dimensional gas chamber. Using averaging techniques, we prove precise rates of convergence of the actual motions of the piston to its averaged behavior. The convergence is uniform over all initial conditions in a compact set. The results extend earlier work by Sinai and Neishtadt, who determined that the averaged behavior is periodic oscillation. In addition, we investigate the piston system when the particle interactions have been smoothed. The convergence to the averaged behavior again takes place uniformly, both over initial conditions and over the amount of smoothing.Comment: Accepted by Nonlinearity. 27 pages, 2 figure

    Big Entropy Fluctuations in Nonequilibrium Steady State: A Simple Model with Gauss Heat Bath

    Full text link
    Large entropy fluctuations in a nonequilibrium steady state of classical mechanics were studied in extensive numerical experiments on a simple 2-freedom model with the so-called Gauss time-reversible thermostat. The local fluctuations (on a set of fixed trajectory segments) from the average heat entropy absorbed in thermostat were found to be non-Gaussian. Approximately, the fluctuations can be discribed by a two-Gaussian distribution with a crossover independent of the segment length and the number of trajectories ('particles'). The distribution itself does depend on both, approaching the single standard Gaussian distribution as any of those parameters increases. The global time-dependent fluctuations turned out to be qualitatively different in that they have a strict upper bound much less than the average entropy production. Thus, unlike the equilibrium steady state, the recovery of the initial low entropy becomes impossible, after a sufficiently long time, even in the largest fluctuations. However, preliminary numerical experiments and the theoretical estimates in the special case of the critical dynamics with superdiffusion suggest the existence of infinitely many Poincar\'e recurrences to the initial state and beyond. This is a new interesting phenomenon to be farther studied together with some other open questions. Relation of this particular example of nonequilibrium steady state to a long-standing persistent controversy over statistical 'irreversibility', or the notorious 'time arrow', is also discussed. In conclusion, an unsolved problem of the origin of the causality 'principle' is touched upon.Comment: 21 pages, 7 figure

    A strong pair correlation bound implies the CLT for Sinai Billiards

    Full text link
    For Dynamical Systems, a strong bound on multiple correlations implies the Central Limit Theorem (CLT) [ChMa]. In Chernov's paper [Ch2], such a bound is derived for dynamically Holder continuous observables of dispersing Billiards. Here we weaken the regularity assumption and subsequently show that the bound on multiple correlations follows directly from the bound on pair correlations. Thus, a strong bound on pair correlations alone implies the CLT, for a wider class of observables. The result is extended to Anosov diffeomorphisms in any dimension.Comment: 13 page

    Riemannian theory of Hamiltonian chaos and Lyapunov exponents

    Full text link
    This paper deals with the problem of analytically computing the largest Lyapunov exponent for many degrees of freedom Hamiltonian systems. This aim is succesfully reached within a theoretical framework that makes use of a geometrization of newtonian dynamics in the language of Riemannian geometry. A new point of view about the origin of chaos in these systems is obtained independently of homoclinic intersections. Chaos is here related to curvature fluctuations of the manifolds whose geodesics are natural motions and is described by means of Jacobi equation for geodesic spread. Under general conditions ane effective stability equation is derived; an analytic formula for the growth-rate of its solutions is worked out and applied to the Fermi-Pasta-Ulam beta model and to a chain of coupled rotators. An excellent agreement is found the theoretical prediction and the values of the Lyapunov exponent obtained by numerical simulations for both models.Comment: RevTex, 40 pages, 8 PostScript figures, to be published in Phys. Rev. E (scheduled for November 1996

    Physicochemical properties of mixtures of heavy-metal fluorides

    No full text
    corecore