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The paper proposes an approach to constructing feasible examples of dynamical systems with hyperbolic
chaotic attractors based on the successive transfer of excitation between two pairs of self-oscillators that are
alternately active. An angular variable that measures the relations of the current amplitudes for the two oscillators
of each pair undergoes a transformation in accordance with the expanding circle map during each cycle of
the process. We start with equations describing the dynamics in terms of complex or real amplitudes and then
examine two models based on van der Pol oscillators. One model corresponds to the situation of equality of natural
frequencies of the partial oscillators, and another to a nonresonant ratio of the oscillation frequencies relating
to each of the two pairs. Dynamics of all models are illustrated with diagrams indicating the transformation
of the angular variables, portraits of attractors, Lyapunov exponents, etc. The uniformly hyperbolic nature of
the attractor in the stroboscopic Poincaré map is confirmed for a real-amplitude version of the equations by
computations of statistical distribution of angles between stable and unstable manifolds at a representative set
of points on the attractor. In other versions of the equations the attractors relate presumably to the partially
hyperbolic class.

DOI: 10.1103/PhysRevE.84.016228 PACS number(s): 05.45.−a, 05.40.Ca

I. INTRODUCTION

Chaotic dynamics in dissipative systems is associated with
an object called the strange attractor. Nowadays, the collection
of models with strange attractors is very rich, including math-
ematical examples, as well as models of physical, chemical,
and biological systems [1–7].

In the past, mathematical studies focused on a special
kind of chaotic attractors: the uniformly hyperbolic attractors.
Attractors of this type occur in systems of the so-called
axiom A class and are considered in the hyperbolic theory
[8–17]. The chaotic nature of dynamics on these attractors
is proved rigorously. They possess a property of structural
stability: The phase space structure, character of dynamics,
and its statistical characteristics are insensitive to variation
of parameters and functions in the governing equations.
Originally, it was expected that the uniformly hyperbolic
attractors might be relevant to many physical situations
when dynamical chaos occurs [11,17,18]. However, as time
passed, it became clear that the multiple known concrete
examples of chaos do not fit the narrow frames of the early
hyperbolic theory. Therefore, efforts of mathematicians were
redirected at generalizations applicable to broader classes
of systems [13,16,19,20]. Abandoned for a long time and
not clarified until recently is the question of the possible
occurrence of the dynamical behavior associated with the
uniformly hyperbolic attractors in real-world systems (see dis-
cussion in Refs. [17,21]). In the theory of oscillations, since
the classic works of Andronov and his school, structurally
stable (rough) systems have always been regarded as those
subjected to priority research, and as the most important for
practice [2,13,22]. It seems natural that the same should be the
case for systems with structurally stable uniformly hyperbolic
attractors. The lack of the real-world examples in this regard
is an evident dissonance.

Definitions relating to the hyperbolic theory are most easily
formulated in the case of the discrete-time dynamics governed
by maps (diffeomorphisms). (If needed to deal with continuous
time systems, these definitions can be applied using description
in terms of a Poincaré map.) An orbit is uniformly hyperbolic
if at each point of this orbit in the vector space of all possible
infinitesimal perturbations V one can define a subspace of
vectors VS decreasing in norm in the evolution forward in time
and a subspace of vectors decreasing in reverse time, roughly
speaking, exponentially. All vectors in the space V must allow
representation as linear combinations of vectors belonging to
VS and VU (i.e., the vector space V is a direct sum V = VU ⊕
VS . The uniformly hyperbolic attractors consist exclusively of
orbits of this kind.

Some generalization is partial hyperbolicity [16,20]. In this
case, the vector space V is a direct sum V = VU ⊕ VS ⊕ VC of
unstable, stable, and center subspaces. The last subspace, VC ,
is associated with perturbations either growing in time more
slowly than those relating to VU or decreasing more slowly
than those relating to VS . Attracting invariant sets satisfying
these conditions are called partially hyperbolic attractors.

In textbooks and reviews, examples of the uniformly
hyperbolic attractors are traditionally represented by artificial
mathematical constructions [8–15,20]. One is the Smale-
Williams solenoid, which can occur in the phase space of maps
of dimension 3 or more. Consider a domain in the form of torus
and think of it as a plastic doughnut. On one step of the trans-
formation we stretch the doughnut, squeeze it in the transversal
direction, fold it to get an M-fold loop (M � 2), and then insert
this loop within the original torus. At each next repetition of
the procedure, the number of coils is multiplied by the integer
M , and the total volume of the object decreases (because the
map is dissipative). In the limit the number of coils tends
to infinity, and volume to zero. In the transversal cross sec-
tions the object displays a Cantor-like structure. An obvious
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condition for such an attractor to occur is the presence of an
angular variable, that undergoes transformation according to
the expanding circle map (or Bernoulli map) ϕn+1 = Mϕn.

The first few examples of feasible continuous-time dynam-
ical systems with attractors of Smale-Williams type in their
Poincaré maps were suggested in a number of recent papers by
Kuznetsov et al. [23–27]. Here, the role of angular variable was
played by the phase of some oscillating process. The systems
were composed of two or more oscillators that were activated
in alternating manner through transfer of excitation from one
oscillator to another with the simultaneous transformation of
the phase in accordance with a map of Bernoulli type. The
chaotic dynamics revealed itself as a randomlike behavior
of the carrier signal in the succession of oscillation bursts
generated by the system. Computations based on verification of
the so-called cone criterion [10–15] confirmed the hyperbolic
nature of the attractors [28] and, for a particular model system
considered in Refs. [24,28], an accurate analysis based on the
technique of computer-assisted proof has been performed by
Wilczak [29].

Due to their structural stability, one expects systems with
hyperbolic attractors to be of particular interest as generators
of robust chaos for electronic communication systems, random
number generators, and various forms of encryption schemes
[30–32].

It is worth noticing, however, that the above examples
[24–27] describe specially designed devices rather than
systems of natural origin. The search for real-world hyper-
bolic chaotic attractors and demonstration of their possible
significance in, e.g., ecology, physiology and neuroscience,
or hydrodynamics remains an interesting and challenging
problem [13,21]. In this perspective it is obviously of interest
to broaden our understanding of the type of structures that can
be expected to display hyperbolic chaotic attractors.

In this paper we suggest an approach that is based on
the amplitude rather than the phase dynamics of the coupled
oscillator systems. Section II explains and illustrates the main
idea: In a pair of self-oscillators, fed from a common supply,
the relative distribution of amplitudes is characterized by an
angular variable. We then compose a system of two such
pairs of oscillators that alternately are driven into the active
regime by means of an external parameter modulation. At the
same time, the oscillator pairs are coupled so that excitation
is transferred from one pair to the other in such a way
that the artificially introduced angular coordinate undergoes
multiplication by a factor M = 3 in each cycle of the external
modulation. We demonstrate the hyperbolic character of the
observed chaotic attractor through calculation of both the
Lyapunov spectrum and the return map over a full modulation
period. The return map displays a typical Bernoulli shift
character with a slope of 3, and the largest Lyapunov exponent
is found to be nearly constant and approximately equal to ln 3.

In Secs. III and IV we examine the implementation of the
above approach in two different versions of four coupled van
der Pol oscillators. The first example considers the resonant
case where the natural frequencies of all four oscillators are
equal. The second example, on the other hand, considers a
situation in which strong resonances between the two pairs
of oscillators do not occur. As believed, in both cases, the
attractors are partially hyperbolic: The systems involve (two,

respectively one) neutral (or nearly neutral) variables that
do not correspond to expanding or contracting directions.
However, the presence of these variables apparently does not
affect the roughness of the amplitude chaotic dynamics.

II. AMPLITUDE DYNAMICS IN TERMS OF ANGULAR
VARIABLE AND SIMPLE MODEL WITH
BERNOULLI-LIKE TRANSFORMATION

OF THIS VARIABLE

Consider first a pair of self-oscillatory elements whose
energy losses are compensated from a common source, and
suppose the equations for the complex amplitudes a1,2 read

ȧ1 = 1
2 (1 − |a1|2 − |a2|2)a1,

(1)
ȧ2 = 1

2 (1 − |a1|2 − |a2|2)a2.

The saturation of the amplitudes is determined obviously
by a condition |a1|2 + |a2|2 = 1. At any given time, the
current distribution of energy among the oscillators may be
characterized by an angular coordinate θ defined in such way
that the amplitudes satisfy the required relation: |a1|2 = cos2 θ ,
|a2|2 = sin2 θ .

Suppose now that we have two such pairs of oscillators,
each governed by equations of the type (1), and suppose that
they are subjected to periodic parameter modulation produced
by same external source in such way that the excitation of
the two pairs alternates on successive half periods of the
modulation. In addition, we supplement the equations with
terms introducing the pairwise coupling between oscillators
relating to two alternately active subsystems. The concrete
form of these additional terms is selected in such way that the
transfer of the excitation on each period of the modulation is
accompanied with transformation of the angular coordinate θ

according to the expanding circle map. (Hereafter we consider
the tripling transformations.) As a consequence, the dynamics
of the amplitudes in the system will correspond to the presence
of the Smale-Williams type attractor in the stroboscopic map.

Let us consider model equations in terms of the complex
amplitudes of the following form:

ȧ1 = 1
2 [A cos(2πt/T ) − |a1|2 − |a2|2]a1 + 1

2εb1,

ȧ2 = 1
2 [A cos(2πt/T ) − |a1|2 − |a2|2]a2 + 1

2εb2,

ḃ1 = 1
2 [−A cos(2πt/T ) − |b1|2 − |b2|2]b1

(2)
+ 1

2εa1(|a1|2 − 3|a2|2),

ḃ2 = 1
2 [−A cos(2πt/T ) − |b1|2 − |b2|2]b2

+ 1
2εa2(3|a1|2 − |a2|2).

Here a1,2 and b1,2 are the complex amplitudes associated with
the two subsystems, each composed of a pair of oscillators
fed from a separate common energy source. Due to the
counterphase modulation of parameters controlling the self-
oscillations in the subsystems, they become active alternately;
A is the magnitude of the modulation, T is the period of the
modulation. The terms proportional to the constant ε introduce
pairwise coupling between the oscillators relating to the two
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FIG. 1. (Color online) Typical example of time dependencies for the amplitude variables of four oscillators obtained from numerical
solution of Eq. (4) with T = 10, A = 3, ε = 0.06: (a) pairwise sums of squared amplitudes ρa = a2

1 + a2
2 and ρb = b2

1 + b2
2, and the amplitude

variables for (b) the first and (c) the second pair of the oscillators.

subsystems. As explained below, their concrete form is chosen
according to the desired mode of operation.

Suppose in a half period of activity of the first pair
(A cos 2πt/T > 0) the variables a1,2 are characterized by
nearly constant amplitudes corresponding to some θ : a1 ∼
cos θ , a2 ∼ sin θ . At the beginning of the activity stage for
the second pair (A cos 2πt/T < 0), the excitation of the
oscillators is stimulated by the coupling terms in the third and
fourth lines of Eq. (2). From the well-known trigonometric
relations, one can see that

(|a1|2 − 3|a2|2)a1 ∼ (cos2 θ − 3 sin2 θ ) cos θ = cos 3θ,

(3|a1|2 − |a2|2)a2 ∼ (3 cos2 θ − sin2 θ ) sin θ = sin 3θ.
(3)

Hence, the amplitude ratio for the complex variables b1,2 will
be determined by the tripled angular variable, 3θ . Next, as
the activity stage of the second pair comes to the end, the
excitation is transferred back to the first pair. According to the
form of the coupling terms in the first and second equations (2),
it occurs without change of the θ variable. So, over the
complete period of modulation this variable undergoes the
tripling transformation: θn+1 ≈ 3θn.

Observe that Eq. (2) is invariant with respect to two phase
shifts (i.e., to the variable changes a1,b1 → a1e

iϕ1 ,b1e
iϕ1 and

a2,b2 → a2e
iϕ2 ,b2e

iϕ2 , where ϕ1 and ϕ2 are arbitrary con-
stants). We can, therefore, restrict ourselves to the description
of amplitude dynamics exclusively, using the equations in real
variables

ȧ1 = 1
2

[
A cos(2πt/T ) − a2

1 − a2
2

]
a1 + 1

2εb1,

ȧ2 = 1
2

[
A cos(2πt/T ) − a2

1 − a2
2

]
a2 + 1

2εb2,

ḃ1 = 1
2

[−A cos(2πt/T ) − b2
1 − b2

2

]
b1 + 1

2εa1
(
a2

1 − 3a2
2

)
,

ḃ2 = 1
2

[−A cos(2πt/T ) − b2
1 − b2

2

]
b2 + 1

2εa2
(
3a2

1 − a2
2

)
.

(4)

(Here we allow the variables a1,2 and b1,2 to be positive or
negative, so the true amplitudes of the oscillators correspond
to the absolute values of these variables.)

Next, instead of description of the dynamics in terms of
continuous time, one can examine the dynamics in discrete
time by means of a stroboscopic Poincaré map. In our
case, the map xn+1 = T(xn) operates with vectors xn =
{a1,a2,b1,b2}t=nT . Although not derived analytically, this map
can be obtained easily through computations by solving the
differential equations over one period T . In the frame of the
original equations, the map is eight-dimensional (accounting
for the complex nature of the variables a1,2 and b1,2), but for
the real-variable equations (4) it is four-dimensional.

In the discussed mode of operation, according to the above
argumentation, one can define an angular variable undergoing
tripling on successive iterations. Due to compression of the
phase volume along other directions in the four-dimensional
state space of the Poincaré map of the model in Eq. (4),
the attractor of this map is expected to be a variant of the
Smale-Williams solenoid arising due to the tripling of a
number of coils on each next step of the iterations. It will be
a uniformly hyperbolic attractor embedded in the state space
of the four-dimensional Poincaré map with one-dimensional
unstable manifold and three-dimensional stable manifold of
every orbit on the attractor.

To illustrate that the model operates in accordance with the
above description, let us consider some computational results.
Figure 1 shows time dependences for real amplitudes obtained
from numerical simulation of equations (4) at appropriately
selected parameter values T = 10, A = 3, ε = 0.06. Observe
the alternating activity of the first and the second pairs of the
oscillators. As shown below, the transformation of the angular
variable responsible for distribution of the amplitudes in each
pair of oscillators corresponds to the Bernoulli-type map on
each modulation period.
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FIG. 2. Attractor in the Poincaré section in two-dimensional
projection on the plane of real amplitudes of (a) the first two oscillators
and (b) diagram for the angular variables at successive instants t = nT

for the system in Eq. (4) with T = 10, ε = 0.06, A = 3.

Figure 2(a) shows the attractor of the Poincaré map in
projection on a plane of variables relating to one of the
alternately exciting subsystems and 2(b) shows a numerically
obtained diagram illustrating transformation at successive
modulation periods of the angular coordinate responsible for
distribution of the amplitudes in each pair of the oscillators
constituting the system. The angular variable was evaluated at
successive instants tn = nT as θn = arctan[b1(nT )/a1(nT )], if
a1(nT ) > 0, and θn = arctan[b1(nT )/a1(nT )] + π otherwise.
The attractor indeed looks like a projection of the Smale-
Williams solenoid containing a fine structure of filaments. It
may be seen that for the cyclic coordinate θ the expanding
circle map is recovered with high accuracy producing just the
tripling of the variable: One bypass of the circle for preimage
implies the three-fold bypass for the image.

Evaluation of the Lyapunov exponents for the model in
Eq. (4) is based on simultaneous solution of these equations
together with a collection of four linearized variation equations
along the reference orbit on the attractor, with Gram-Schmidt
orthogonalization and renormalization of the respective
perturbation vectors in the course of the procedure (the
Benettin algorithm [33]).

Figure 3(a) shows all four Lyapunov exponents for the
Poincaré map plotted versus the amplitude of slow modulation
A for fixed values of the other parameters ε = 0.06, T = 10.
Panels (b) and (c) represent analogous plots of the Lyapunov
exponents versus ε (at A = 3 and T = 10) and T (at A = 3
and ε = 0.06). Notice that the largest exponent remains almost
constant and close to ln 3 = 1.0986 . . . in a wide range of each
parameter. This agrees well with the approximation based
on the Bernoulli tripling map. Such behavior of the largest
Lyapunov exponent responsible for the chaotic nature of the
dynamics may be regarded as a confirmation of structural
stability of the hyperbolic attractor, which evidently persists
in certain domain in the parameter space The other three
exponents are all negative and correspond to contraction of
the phase volume in directions transversal to the filaments of
the Smale-Williams solenoid.

For A = 3, ε = 0.06 and T = 10 the Lyapunov exponents
for the Poincaré map are

�1 = 1.095, �2 = −4.172,
(5)

�3 = −7.712, �4 = −10.690.

FIG. 3. (Color online) Lyapunov exponents of the Poincaré map
for the system in Eq. (4) plotted versus parameters: (a) the dependence
on the amplitude of the slow modulation A at T = 10, ε = 0.06;
(b) the dependence on the coupling parameter ε at A = 3, T = 10;
(c) the dependence on the period of the slow modulation T at A = 3,
ε = 0.06.

and an estimate of the fractal dimension of the attractor in the
Poincaré sections by the Kaplan-Yorke formula yields D =
1 + �1/|�2| ≈ 1.26. The noninteger value reflects the fractal-
like structure of the attractor.

To verify the hyperbolicity of the attractor, we apply the
numerical approach (suggested e.g., in Refs. [34–36]). In this
procedure, the angles between the directions of growth of small
perturbations are calculated forward and backward in time at
points of a reference trajectory. Absence of angles close to
zero indicates that the dynamics is hyperbolic. If the angle
distribution demonstrates nonzero probability of very small
angles, it suggests the presence of tangencies between stable
and unstable manifolds and thus implies nonhyperbolicity.

In our case for the Poincaré map of the real-amplitude
equations (4), the unstable manifold is one-dimensional, and
the stable manifold is three-dimensional. An appropriate modi-
fication of the above method was described in Refs. [24,25,37].
First, we generate a representative orbit on the attractor by
computing Eqs. (4) over a sufficiently long time interval.
Next, we compute variation equations for perturbations of
the orbit forward in time, normalizing the vector a(t) =
{ã1(t),ã2(t),b̃1(t),b̃2(t)} at each integration step to preclude
divergence. Then, we compute three replicas of the variation
equations with randomly chosen initial conditions backward
in time to find three vectors b(t), c(t), and d(t), performing
Gram-Schmidt reorthonormalization of the vectors at each
integration step to avoid divergence and predominance of one
of the vectors.

At each stroboscopic section tn = nT , the vector an = a(tn)
defines tangent direction to the unstable manifold and the
span of {bn,cn,dn} = {b(tn),c(tn),d(tn)} corresponds to the
tangent subspace to the three-dimensional stable manifold.
To evaluate the angle α between the unstable and stable
manifolds, we determine a vector vn transversal to the stable
manifold by solving the set of algebraic linear equations
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FIG. 4. An estimate of the density function for the distribution
of angles between the local stable and unstable manifolds for the
attractor in the stroboscopic Poincaré map obtained numerically at
T = 10, A = 3, ε = 0.06 for the model system in Eq. (4) represented
in real amplitudes. Observe the clearly expressed separation of the
distribution from zero angles that is the indicator of the hyperbolicity.

vn · bn = 0, vn · cn = 0, vn · dn = 0. Then, we calculate the
angle βn ∈ [0,π/2] from cos βn = |vn · an|/|vn||an|, and set
αn = βn − π/2. Figure 4 shows the density function estimated
from the histogram of the computed array of αn. Since the
distribution is clearly separated from zero angles, the test
confirms the hyperbolicity of the attractor.

For the original set of equations (2) in complex amplitudes
evaluation of the Lyapunov exponents in computations yields

�1 = 1.097, �2 = 0.000,

�3 = 0.000, �4 = −4.166,

�5 = −5.366, �6 = −5.365,

�7 = −7.556, �8 = −10.637.

(6)

The largest exponent is of the same value as in the real-
amplitude equations up to numerical errors and it is close to
ln 3. The second and the third exponents are zero (up to inaccu-
racy of the computations); they are evidently associated with
the neutral perturbations of the above-mentioned two phase
shifts leaving the equations invariant. All other exponents
are negative; among them �7 and �8 coincide with certain
negative exponents from the spectrum of the four-dimensional
model, while �5 and �6 are special for the complex-amplitude
version of the model.

Estimate of the fractal dimension of the attractor in the
Poincaré sections by the Kaplan-Yorke formula yields D =
3 + (�1 + �2 + �3)/|�4| ≈ 3.26. This attractor embedded
in the eight-dimensional state space of the Poincaré map has
to be regarded as relating to the class of partially hyperbolic
attractors because of presence of center subspace associated
with the phase variables ϕ1 and ϕ2 and the corresponding
zero-valued two Lyapunov exponents. In the model under
consideration this remark is not so essential: The invariance of
the equations (2) in respect to the phase shifts is exact; it means
that one can accept a rightful agreement not to distinguish
states distinct only in the phases, and, in this sense, treat the
dynamics as true uniformly hyperbolic. However, in systems
for which description in terms of slow complex amplitudes is

approximate (like those discussed in the next two subsections),
one may expect peculiarities associated with some features
of the partially hyperbolic attractor. If the deflections from
the slow-amplitude approximation are small enough, it may
be thought that the dynamics of the amplitude variables will
retain its character because of the intrinsic roughness of the
hyperbolic attractor.

III. MODEL OF TWO ALTERNATELY EXCITED PAIRS
OF VAN DER POL OSCILLATORS WITH EQUAL

NATURAL FREQUENCIES

Let us now turn our attention toward model systems
composed of van der Pol oscillators. The van der Pol oscillator
is a well known, popular, and significant paradigm model of
a self-oscillatory system. It is often applied in the context of
electrical, mechanical, chemical, and biological oscillations;
and the same may be said in relation to composite schemes
based on such elements.

In this section we assume that all partial oscillators used
to build a composite system have equal natural frequency ω0,
and consider the following set of equations

ẍ1 − [
A cos(2πt/T ) − x2

1 − x2
2

]
ẋ1 + ω2

0x1 = εẏ1,

ẍ2 − [
A cos(2πt/T ) − x2

1 − x2
2

]
ẋ2 + ω2

0x2 = εẏ2,

ÿ1−
[−A cos(2πt/T )−y2

1 − y2
2

]
ẏ1+ω2

0y1 =ε
(
x2

1 − 3x2
2

)
ẋ1,

ÿ2−
[−A cos(2πt/T )−y2

1 − y2
2

]
ẏ2+ω2

0y2 =ε
(
3x2

1 − x2
2

)
ẋ2.

(7)

Here we have two pairs of the self-oscillators. Each pair,
characterized by the generalized coordinate variables x1,2 and
y1,2, respectively, is supposed to get supply from the common
source, as seen from the structure of the expressions in square
brackets. The two pairs become active in turn because of the
periodic modulation of the parameters responsible for the
Andronov-Hopf bifurcation in the van der Pol oscillators;
the intensity of the modulation is characterized by parameter
A, and its period by the constant T . The coupling terms
proportional to the constant ε ensure transfer of the excitation
between the first and second oscillators of each pair; their
structure is similar to that postulated in the previous section.
Note that the transfer of the excitation occurs under a resonance
condition through the first harmonic component of the right-
hand terms in the equations.

As shown in Appendix, using the approximation of the
slow-amplitude approach [2,22,41,42], the system is reduced
just to the form, which corresponds to the real amplitude
equations (4). Hence, its operation must be similar to that
considered in the previous section. In view of the structural
stability of the hyperbolic attractor of the model in Eq. (4), the
approximate correspondence is expected to take place, at least
for parameters in the range of applicability of the description
in terms of the amplitude equations.

Figure 5 shows wave forms generated by the system as
obtained from numerical solution of Eqs. (7) for A = 3,
T = 10, ε = 0.06, ω0 = 2π . Panels (a) and (b) represent
the plots for the pairwise coupled oscillators. Observe that
the first and second subsystems are active alternately, and
that the distribution of the intensity of the oscillations varies
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FIG. 5. (Color online) Wave forms generated by the system in Eq. (7) for A = 3, T = 10, ε = 0.06, ω0 = 2π .

drastically between successive stages of activity. Panel (c)
shows the wave forms of two oscillators relating to one and the
same subsystem; observe that the phases of both oscillators are
the same, at least as distinguishable from the plot. (Actually,
this phase varies slowly on large time scales and represents a
special variable not involved in the hyperbolic structure; due to
this circumstance the attractor in the stroboscopic map of this
system relates, as believed, to the partially hyperbolic class.)

It is again convenient to introduce a description in terms of a
stroboscopic Poincaré map. Now, the map xn+1 = T(xn) oper-
ates with vectors xn = {x1,u1,x2,u2,y1,v1,y2,v2}t=nT , where
u1,2 = ẋ1,2/ω0 and v1,2 = ẏ1,2/ω0 are normalized generalized
velocities for the respective oscillators. The Poincaré map
can be obtained computationally by solving the differential
equations (7) for one period T .

To proceed, we need to introduce an angular variable
characterizing the distribution of amplitudes for the oscillators
constituting one subsystem, expressed via the dynamical
variables (x1,2,u1,2). In the context of the present model this
is a more subtle matter than that in the previous section. (A

straightforward definition like arctan [
√

x2
2 + u2

2/

√
x2

1 + u2
1] is

not satisfactory as it deals with only one of four quadrants
for the angular variable; to illustrate the relation to the
Smale-Williams solenoid the angular variable needs to be
allowed to take values corresponding to the entire circle.) The
following approach is found to be successful. First, select a
pair from (x1,u1) and (x2,u2) with larger r2

i = x2
i + u2

i . Then,
if |xi | > |ui |, we set s = sgn(xi), otherwise, s = sgn(ui), and
ξ = sxi/ri , η = sui/ri . Now, before and after each step of
the Poincaré map, evaluate X = ξx1 + ηu1, Y = ξx2 + ηu2

and X′ = ξx ′
1 + ηu′

1, Y ′ = ξx ′
2 + ηu′

2, where the prime marks
the updated variables. (The coefficients ξ and η are accepted
to be identical in the course of evaluation both of X, Y and
X′, Y ′.) Finally, set θ = arg(X + iY ) and θ ′ = arg(X′ + iY ′)
to plot along the axes on the diagram for the angular
coordinate.

Figure 6 shows the attractor in the Poincaré section on
the plane of variables X,Y [panel (a)] and the iteration
diagram for the angular variable θ [panel (b)]. In comparison
with Fig. 2 the attractor appears as a formation widened

in direction transversal to the coils. It is, as mentioned
above, because a system now has a slowly evolving phase
variable. Nevertheless, some fine structure inherited from the
Cantor-like arrangement of the solenoid is distinguishable on
the plot. As to the diagram for the angular variable, due to its
proper definition, the plot looks very similar to that of Fig. 2(b)
associated with the true uniformly hyperbolic attractor. Hence,
one may assert that the hyperbolic component actually exists
and that its intrinsic structural stability is conserved in spite
of the perturbations arising from the dynamics of the phase
variable.

Figure 7 shows results of a computation of the spectrum
of Lyapunov exponents for the Poincaré map of the system
in Eq. (7). In panel (a) they are plotted versus the modulation
intensity at T = 10, ε = 0.06, ω0 = 2π . Panels (b) and (c)
are analogous plots for the Lyapunov exponents versus the
coupling parameter ε (at A = 3, T = 10, ω0 = 2π ) and versus
the modulation period T (at A = 3, ε = 0.06, ω0 = 2π ).
Observe that the largest exponent remains close to ln 3
in a wide range. This confirms the robust nature of the
motion associated with the hyperbolic component. The second
exponent is indistinguishable from zero in the computations,
and is obviously associated with the slow-evolving phase
variable. Other exponents are all negative. Particularly, at

FIG. 6. (a) Attractor in the Poincaré section in two-dimensional
projection on the plane of the auxiliary variables introduced in the
text and characterizing amplitudes of the first two oscillators and
(b) diagram for the angular variables at successive instants t = nT

for the system in Eq. (7) at A = 3, T = 10, ε = 0.06, ω0 = 2π .
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FIG. 7. (Color online) Lyapunov exponents of the Poincaré map
for the system in Eq. (7) plotted versus parameters: (a) the dependence
on the amplitude of the slow modulation A at T = 10, ε = 0.06,
ω0 = 2π ; (b) the dependence on the coupling parameter ε at A = 3,
T = 10, ω0 = 2π ; (c) the dependence on the period of the slow
modulation T at A = 3, ε = 0.06, ω0 = 2π .

A = 3, T = 10, ε = 0.06, ω0 = 2π we obtain

�1 = 1.099, �2 = 0.000,

�3 = −3.373, �4 = −4.198,

�5 = −6.326, �6 = −7.097,

�7 = −11.041, �8 = −12.020.

(8)

It is interesting to compare these values with the results for the
uniformly hyperbolic attractor of the four-dimensional real-
amplitude system. (We recall that the Eqs. (7) reduce to that
system in the approximation of the slow-varying amplitudes,
see Appendix.) As one can see the values of �1, �4, �6, �7

from the list in Eq. (8) agree well with the values of �1, �2,
�3, �4 from the list in Eq. (5). The dimension of the attractor
in the Poincaré map in the present case is estimated from the
Kaplan-Yorke formula as D = 2 + (�1 + �2)/|�3| ≈ 2.33.

IV. MODEL OF TWO ALTERNATELY EXCITED PAIRS
OF NONRESONANT VAN DER POL OSCILLATORS

Let us examine another version of a system composed of
van der Pol oscillators, which corresponds more closely to

the original model in Eq. (2), and is governed by the set of
equations

ẍ1 − [
A cos(2πt/T ) − x2

1 − 1
2x2

2

]
ẋ1 + ω2

1x1 = εẏ1,

ẍ2 − [
A cos(2πt/T ) − 1

2x2
1 − x2

2

]
ẋ2 + ω2

2x2 = εẏ2,

ÿ1−
[− A cos(2πt/T )−y2

1 − 1
2y2

2

]
ẏ1+ω2

1y1 =ε
(
x2

1 − 3
2x2

2

)
ẋ1,

ÿ2−
[− A cos(2πt/T )− 1

2y2
1 − y2

2

]
ẏ2+ω2

2y2 =ε
(

3
2x2

1 −x2
2

)
ẋ2.

(9)

Unlike the model in Eq. (7), the first and second oscillator
of the alternately excited subsystems are now characterized by
different natural frequencies ω1 and ω2, which are assumed not
to satisfy low-order resonant conditions. Next, the factors 1/2
are introduced at some terms to ensure correspondence with
the system in Eq. (2) in the slow complex amplitude approach
for the nonresonant situation (see Appendix). Nevertheless,
the transfer of the excitation between the first and second
oscillators of each subsystem due to the coupling terms in the
right-hand parts remains resonant as the natural frequencies
coincide for the oscillators marked with the same subscript
1 or 2 in both subsystems. Operation of the system is
similar to that considered in the context of the previous
models. In an approximate description based on the real
amplitude equations (4), we have the hyperbolic attractor of
Smale-Williams type in the stroboscopic map. Because of its
structural stability, it is natural to expect that the robust chaotic
dynamics of the amplitudes survive in the system (9) as well,
although the attractor of the complete set of equations will
relate to the partially hyperbolic class.

To illustrate the dynamics we select the parameters A = 3,
T = 10, ε = 0.06, like in the previous sections. With respect
to the natural frequencies ω1 and ω2, it is appropriate to choose
them in a ratio given by two successive Fibonacci numbers to
avoid at least low order resonances; concretely, we set ω1 =
5ω0, ω2 = 8ω0 with ω0 = 2π .

Figure 8 shows wave forms generated by the system as
obtained from numerical solution of Eqs. (9). Panels (a) and
(b) represent the plots for the generalized coordinates of the
pairwise coupled oscillators. The first and second subsystems
are active alternately, and the intensities of the oscillations vary
on successive stages in a randomlike fashion.

Like in the previous section, we must pay special attention
to definition of an appropriate angular variable to illustrate
the link with the Smale-Williams attractor in the amplitude
dynamics. Now, the definition must be designed to disregard
two phase variables relating to the oscillators marked with

FIG. 8. (Color online) Typical pattern of time dependencies for coordinate variables of four oscillators obtained from numerical solution
of Eqs. (9) at T = 10, A = 3, ε = 0.06, ω1 = 10π , ω2 = 16π .
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FIG. 9. (a) Attractor in the Poincaré section in two-dimensional
projection on the plane of two real variables relating to the first two
oscillators of the system in Eq. (9) (see text). (b) Diagram for the
angular variables for the system in Eq. (9). Parameters are T = 10,
ε = 0.06, A = 3, ω1 = 10π , ω2 = 16π .

subscripts 1 and 2, respectively. The following evaluation rou-
tine is appropriate. For i = 1,2, if |xi | > |ui |, set si = sgn(xi),
otherwise, si = sgn(ui). Then, before and after each step of the
Poincaré map, evaluate X = s1

√
x2

1 + u2
1, Y = s2

√
x2

2 + u2
2

and X′ = s1

√
x ′

1
2 + u′

1
2, Y ′ = s2

√
x ′

2
2 + u′

2
2, where the prime

marks the updated variables. (The factors s1,2 are identical
in evaluation both of X, Y and X′, Y ′.) Finally, set θ =
arg(X + iY ) and θ ′ = arg(X′ + iY ′).

Figure 9 shows the attractor in the Poincaré section on
the plane of variables X, Y [panel (a)] and the iteration
diagram for the angular variable θ [panel (b)]. The attrac-
tor looks similar to that shown in Fig. 2 with a certain
transversal widening occurring apparently because of the
slow evolution of the phase variables. The diagram for the
angular variable looks very similar to that of Fig. 2(b)
associated with the uniformly hyperbolic Smale-Williams
attractor.

FIG. 10. (Color online) Lyapunov exponents of the Poincaré map
for the system in Eq. (9) plotted versus parameters: (a) the dependence
on the amplitude of the slow modulation A at T = 10, ε = 0.06,
ε = 0.06; (b) the dependence on the coupling parameter ε at A = 3,
T = 10; (c) the dependence on the period of the slow modulation T at
A = 3, ε = 0.06. The values of the other parameters are ω1 = 10π ,
ω2 = 16π .

Figure 10 shows Lyapunov exponents for the Poincaré map
of the system in Eq. (9) versus parameter A [panel (a)], versus
parameter ε [panel (b)], and versus parameter T [panel (c)]
at fixed values of the other parameters. Again, the largest
exponent is close to ln 3 in a wide parameter range. The second
and third exponents are nearly zero being associated obviously
with two slow-evolving phase variables. Other exponents
are all negative. Particularly, for A = 3, T = 10, ε = 0.06
we have

�1 = 1.081, �2 = 0.000,

�3 = 0.000, �4 = −4.173,

�5 = −5.385, �6 = −5.386,

�7 = −7.717, �8 = −10.632.

(10)

These results are remarkable close to the data in Eq. (6)
corresponding to the description of the system in terms of
slow complex amplitudes. The Kaplan-Yorke estimate of the
dimension is D ≈ 3.26.

V. CONCLUSION

In this article we have advanced an approach to the
design of systems with attractor of Smale-Williams type
in the stroboscopic map for the amplitudes of oscillators
constituting the system. The approach is based on the
manipulation by the angular variable describing distribution
of amplitudes for self-oscillators, which are fed from a
common supply of energy. By this manipulation the angular
variable undergoes transformation according to expanding
circle map on each time period of the externally forced
periodic parameter modulation. The proposed principle can
be implemented, for example, in systems of electronics and
nonlinear optics for the generation of robust chaos. Moreover,
on this principle, one can build many models manifesting
various interesting phenomena of complex dynamics, like it
was done with systems based on manipulation by phases
of successively generated oscillatory trains (e.g., Arnold
cat map dynamics [26,38], complex analytic dynamics with
Mandelbrot and Julia sets [39], robust strange nonchaotic
attractor [40], etc.).

A subtle point in the present study is that the feasible
examples composed of van der Pol oscillators and discussed
in Secs. III and IV are reduced to the equation with a
uniformly hyperbolic attractor only in a certain approximation
corresponding to the description in terms of real amplitudes
while neglecting the phases. When the phases are taken
into account, the attractor in principle has to be regarded
as belonging to the class of partially hyperbolic attractors.
Because of the structural stability for the attractor of the
amplitude equations, it is natural to suppose that the dynamics
of the amplitudes is not affected by influence of the dynamics
of the phases, and therefore this dynamics preserves the
properties intrinsic to the uniformly hyperbolic attractor (one
can talk of the hyperbolic component of the motion). Data of
numerical simulations seem to confirm this assumption.

Quantitatively, features of the partial hyperbolicity reveal
themselves, for example, in Lyapunov spectra (presence
of zero or close to zero exponents) and in dimensional
characteristics. Say the integer part of the fractal dimension
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for the Poincaré map attractor equals the dimension of the
center subspace plus one (the dimension of the unstable
subspace), and the fractional part of the dimension estimated
from the Kaplan-Yorke formula may depend on the terms
of the Lyapunov spectrum outside those relating to the
amplitude dynamics (see the final paragraph of Sec. III).
Surely, mathematical justification of these observations would
be desirable.

In this frame, it is worth noting that elaboration of the
mathematically sound criteria for partial hyperbolicity, which
would allow verification through computations (like the cone
criterion, or analysis of the distribution of angles of intersection
of stable and unstable subspaces for the uniform hyperbolicity)
surely deserves attention as well as the question to what extent
physically meaningful roughness of chaotic dynamics may be
associated with the partially hyperbolic attractors.

In any case, the material presented in this article is
of practical interest in a frame of design of robust chaos
generators (e.g., for communication systems, cryptography,
and random number generation). At the same time it is of
theoretical interest by providing deep and well-developed
concepts of the mathematical hyperbolic theory with a physical
content.

ACKNOWLEDGMENTS

O.B.I. acknowledges partial support from the President
of Russian Federation, Grant No. MK-905.2010.2. S.P.K.
acknowledges partial support from the Russian Foundation
for Basic Research, Grant No. 09-02-00426.

APPENDIX: SLOW-AMPLITUDE DESCRIPTION OF
MODELS COMPOSED OF VAN DER POL OSCILLATORS

Let us apply the method of slow complex amplitudes
[2,22,41,42] first to the system in Eq. (9). With this purpose,
we set

x1 = a1e
iω1t + a∗

1e
−iω1t ,

x2 = a2e
iω2t + a∗

2e
−iω2t ,

y1 = b1e
iω1t + b∗

1e
−iω1t ,

y2 = b2e
iω2t + b∗

2e
−iω2t ,

(A1)

and

ẋ1 = iω1a1e
iω1t − iω1a

∗
1e

−iω1t ,

ẋ2 = iω2a2e
iω2t − iω2a

∗
2e

−iω2t ,

ẏ1 = iω1b1e
iω1t − iω1b

∗
1e

−iω1t ,

ẏ2 = iω2b2e
iω2t − iω2b

∗
2e

−iω2t .

(A2)

where complex amplitudes a1,2(t), b1,2(t) are assumed to be
functions of time. Simultaneous validity of Eqs. (A1) and (A2)
implies that the following relations must take place

ȧ1e
iω1t + ȧ∗

1e−iω1t = 0,

ȧ2e
iω2t + ȧ∗

2e−iω2t = 0,

ḃ1e
iω1t + ḃ∗

1e
−iω1t = 0,

ḃ2e
iω2t + ḃ∗

2e
−iω2t = 0.

(A3)

(Acceptance of these relations is rightful: As we introduce
four complex variables instead of four real ones, we are free
to impose these additional conditions.)

Now, we substitute the variables x and y expressed in terms
of the complex amplitudes in Eqs. (9) and, accounting for the
relations in Eq. (A3), replace the derivatives of the conjugate
variables through the complex amplitudes themselves (e.g.
ȧ∗

1e−iω1t = −ȧ1e
iω1t etc.). The resulting set of equations

is exact, but a cumbersome representation of the original
equations in the new variables a1, a2, b1, b2. The next step is
account for the slow-varying nature of the complex amplitudes.
We multiply the equations for variables a1 and b1 by e−iω1t ,
and the equations for a2 and b2 by e−iω2t and perform the
averaging over the fast oscillations. In the absence of low-
order resonances (relations of type pω1 = qω2 with integer
coefficients less than 4), this corresponds simply to removing
all terms in the equations containing the exponentials. After
some obvious, though cumbersome algebraic manipulations,
we obtain exactly the Eqs. (2) for the complex amplitudes a1,
a2, b1, b2.

Let us finally consider the application of this method to
Eqs. (7). Now, the natural frequencies of all oscillators are
equal, and we use the relations in Eqs. (A1)–(A3) setting
ω1,2 = ω0. After substitution into Eqs. (7) one observes
that some additional terms survive in the averaged relations
because of the equality of the frequencies, and the resulting
set of equations reads

ȧ1 = 1
2

[
A cos(2πt/T )a1 − |a1|2a1−2|a2|2a1+a∗

1a
2
2

] + 1
2εb1,

ȧ2 = 1
2

[
A cos(2πt/T )a2 − 2|a1|2a2+a2

1a
∗
2−|a2|2a2

] + 1
2εb2,

ḃ1 = 1
2

[−A cos(2πt/T )b1 − |b1|2b1 − 2|b2|2b1 + b∗
1b

2
2

]

+ 1
2ε

(|a1|2a1 − 6|a2|2a1 + 3a∗
1a2

2

)
,

ḃ2 = 1
2

[−A cos(2πt/T )b2 − 2|b1|2b2 + b2
1b

∗
2 − |b2|2b2

]

+ 1
2ε

(
6|a1|2a2 − 3a2

1a
∗
2 − |a2|2a2

)
. (A4)

Note that these equations differ from the initial model in
Eq. (2). However, their structure allows us to consider a
situation when all the amplitudes are real. With this additional
assumption, the Eqs. (A4) reduce precisely to the real-
amplitude equations (4).

Lyapunov exponents computed for the attractor of the
stroboscopic Poincaré map for the system in Eq. (A4) with
A = 3, T = 10, ε = 0.06

�1 = 1.097, �2 = 0.000,

�3 = −3.414, �4 = −4.167,

�5 = −6.204, �6 = −7.584,

�7 = −10.834, �8 = −11.845

(A5)

are found to be in remarkable agreement with the results in
Eq. (8). This confirms the applicability of the slow-amplitude
method in the operation modes we deal with.
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