1,784 research outputs found

    Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    Full text link
    Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of a turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model which contains the drift-wave/zonal-flow feedback loop prototypical of the LH transition in plasma devices.Comment: 14 pages, 7 figure

    A QCD Analysis of Double Parton Scattering: Color Correlations, Interference Effects and Evolution

    Full text link
    We derive a factorization formula for the double Drell-Yan cross section in terms of double parton distribution functions (dPDFs). Diparton flavor, spin and color correlations and parton-exchange interference terms contribute, even for unpolarized beams. Soft radiation effects are nontrivial for the color correlation and interference contributions, and are described by non-perturbative soft functions. We provide a field-theoretic definition of the quark dPDFs and study some of their basic properties, including discrete symmetries and their interpretation in a non-relativistic quark model. We calculate the renormalization group evolution of the quark dPDFs and of the soft functions. The evolution receives contributions from both ultraviolet and rapidity divergences. We find that color correlation and interference effects are Sudakov suppressed, greatly reducing the number of dPDFs needed to describe double parton scattering at high energy experiments.Comment: 24 pages, 15 figures, v2: added WW cross section, additional spin structures, finite terms of one-loop soft function, journal versio

    Electroweak Radiative Corrections to Higgs Production via Vector Boson Fusion using Soft-Collinear Effective Theory

    Full text link
    Soft-collinear effective theory (SCET) is applied to compute electroweak radiative corrections to Higgs production via gauge boson fusion, q q -> q q H. There are several novel features which make this process an interesting application of SCET. The amplitude is proportional to the Higgs vacuum expectation value (VEV), and so is not a gauge singlet amplitude. Standard resummation methods require a gauge singlet operator and do not apply here. The SCET analysis requires operators with both collinear and soft external fields, with the Higgs VEV being described by an external soft \phi\ field. There is a scalar soft-collinear transition operator in the SCET Lagrangian which contributes to the scattering amplitude, and is derived here.Comment: Waalewijn added as author. Some errors in previous arXiv version fixed. This version is updated to the published versio

    The probability that the number of points on the Jacobian of a genus 2 curve is prime

    Full text link
    In 2000, Galbraith and McKee heuristically derived a formula that estimates the probability that a randomly chosen elliptic curve over a fixed finite prime field has a prime number of rational points. We show how their heuristics can be generalized to Jacobians of curves of higher genus. We then elaborate this in genus 2 and study various related issues, such as the probability of cyclicity and the probability of primality of the number of points on the curve itself. Finally, we discuss the asymptotic behavior as the genus tends to infinity.Comment: Minor edits, 37 pages. To appear in Proceedings of the London Mathematical Societ

    Non-Perturbative Effects in μeγ\mu \to e \gamma

    Full text link
    We compute the non-perturbative contribution of semileptonic tensor operators (qˉσμνq)(ˉσμν)(\bar q \sigma^{\mu \nu} q)(\bar \ell \sigma_{\mu \nu} \ell) to the purely leptonic process μeγ\mu \to e \gamma and to the electric and magnetic dipole moments of charged leptons by matching onto chiral perturbation theory at low energies. This matching procedure has been used extensively to study semileptonic and leptonic weak decays of hadrons. In this paper, we apply it to observables that contain no strongly interacting external particles. The non-perturbative contribution to μe\mu \to e processes is used to extract the best current bound on lepton-flavor-violating semileptonic tensor operators, ΛBSM450\Lambda_\text{BSM} \gtrsim 450 TeV. We briefly discuss how the same method applies to dark-matter interactions.Comment: 21 pages, 1 figure; version published in JHE

    Large-scale bottleneck effect in two-dimensional turbulence

    Full text link
    The bottleneck phenomenon in three-dimensional turbulence is generally associated with the dissipation range of the energy spectrum. In the present work, it is shown by using a two-point closure theory, that in two-dimensional turbulence it is possible to observe a bottleneck at the large scales, due to the effect of friction on the inverse energy cascade. This large-scale bottleneck is directly related to the process of energy condensation, the pile-up of energy at wavenumbers corresponding to the domain size. The link between the use of friction and the creation of space-filling structures is discussed and it is concluded that the careless use of hypofriction might reduce the inertial range of the energy spectrum

    Higher-Order Gravitational Lensing Reconstruction using Feynman Diagrams

    Full text link
    We develop a method for calculating the correlation structure of the Cosmic Microwave Background (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing, Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up to O(\phi^4) in the lensing potential ϕ\phi. We consider both the diagonal noise TTTT, EBEB, etc. and, for the first time, the off-diagonal noise TTTE, TBEB, etc. The previously noted large O(\phi^4) term in the second order noise is identified to come from a particular class of diagrams. It can be significantly reduced by a reorganization of the ϕ\phi expansion. These improved estimators have almost no bias for the off-diagonal case involving only one BB component of the CMB, such as EEEB.Comment: 17 pages, 17 figure

    Gravitational Lensing of the CMB: a Feynman Diagram Approach

    Get PDF
    We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB) in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS). We study the Hu-Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ4){\mathcal O}(\phi^4) in the lensing potential ϕ\phi. The previously noted large O(ϕ4){\mathcal O}(\phi^4) term can be significantly reduced by a reorganization of the ϕ\phi expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields.Comment: 5 pages, 8 figures, v2: journal versio

    Star formation in mergers with cosmologically motivated initial conditions

    Get PDF
    We use semi-analytic models and cosmological merger trees to provide the initial conditions for multi-merger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realisations of twelve merger trees from z=1.5 to z=0. We include the effects of the large hot gaseous halo around all galaxies, following recent obervations and predictions of galaxy formation models. We find that including the hot gaseous halo has a number of important effects. Firstly, as expected, the star formation rate on long timescales is increased due to cooling of the hot halo and refuelling of the cold gas reservoir. Secondly, we find that interactions do not always increase the SF in the long term. This is partially due to the orbiting galaxies transferring gravitational energy to the hot gaseous haloes and raising their temperature. Finally we find that the relative size of the starburst, when including the hot halo, is much smaller than previous studies showed. Our simulations also show that the order and timing of interactions are important for the evolution of a galaxy. When multiple galaxies interact at the same time, the SF enhancement is less than when galaxies interact in series. All these effects show the importance of including hot gas and cosmologically motivated merger trees in galaxy evolution models.Comment: 19 pages, 15 figures, 6 tables. Accepted for publication in MNRA
    corecore