24,944 research outputs found

    Angularly localized Skyrmions

    Full text link
    Quantized Skyrmions with baryon numbers B=1,2B=1,2 and 4 are considered and angularly localized wavefunctions for them are found. By combining a few low angular momentum states, one can construct a quantum state whose spatial density is close to that of the classical Skyrmion, and has the same symmetries. For the B=1 case we find the best localized wavefunction among linear combinations of j=1/2j=1/2 and j=3/2j=3/2 angular momentum states. For B=2, we find that the j=1j=1 ground state has toroidal symmetry and a somewhat reduced localization compared to the classical solution. For B=4, where the classical Skyrmion has cubic symmetry, we construct cubically symmetric quantum states by combining the j=0j=0 ground state with the lowest rotationally excited j=4j=4 state. We use the rational map approximation to compare the classical and quantum baryon densities in the B=2 and B=4 cases.Comment: 22 page

    Universality and Phase Diagram around Half-filled Landau Level

    Full text link
    Gated GaAs/AlGaAs heterostructures were used to determine the low-temperature behavior of the two-dimensional electron gas near filling factor nu=1/2 in the disorder-magnetic-field plane. We identify a line on which sigma_{xy} is temperature independent, has value sigma_{xy}=0.5 (e^{2}/h), and a distinct line on which rho_{xy}=2 (h/e^{2}). The phase boundaries between the Hall insulator and the principal quantum Hall liquids at nu=1 and 1/3 show levitation of the delocalized states of the first Landau levels for electrons and composite fermions. Finally, the data suggest that there is no true metallic phase around nu=1/2.Comment: 7 pages (Revtex), 5 figure

    Multidimensional Worldline Instantons

    Get PDF
    We extend the worldline instanton technique to compute the vacuum pair production rate for spatially inhomogeneous electric background fields, with the spatial inhomogeneity being genuinely two or three dimensional, both for the magnitude and direction of the electric field. Other techniques, such as WKB, have not been applied to such higher dimensional problems. Our method exploits the instanton dominance of the worldline path integral expression for the effective action.Comment: 22 pages, 13 figure

    Relativistic Modification of the Gamow Factor

    Get PDF
    In processes involving Coulomb-type initial- and final-state interactions, the Gamow factor has been traditionally used to take into account these additional interactions. The Gamow factor needs to be modified when the magnitude of the effective coupling constant increases or when the velocity increases. For the production of a pair of particles under their mutual Coulomb-type interaction, we obtain the modification of the Gamow factor in terms of the overlap of the Feynman amplitude with the relativistic wave function of the two particles. As a first example, we study the modification of the Gamow factor for the production of two bosons. The modification is substantial when the coupling constant is large.Comment: 13 pages, in LaTe

    Worldline Instantons II: The Fluctuation Prefactor

    Full text link
    In a previous paper [1], it was shown that the worldline expression for the nonperturbative imaginary part of the QED effective action can be approximated by the contribution of a special closed classical path in Euclidean spacetime, known as a worldline instanton. Here we extend this formalism to compute also the prefactor arising from quantum fluctuations about this classical closed path. We present a direct numerical approach for determining this prefactor, and we find a simple explicit formula for the prefactor in the cases where the inhomogeneous electric field is a function of just one spacetime coordinate. We find excellent agreement between our semiclassical approximation, conventional WKB, and recent numerical results using numerical worldline loops.Comment: 28 pages, 1 figure; v2 references added, version in PR

    Ageing and utilisation of hospital services in Hong Kong: a retrospective cohort study.

    Get PDF
    Key Messages 1. In the 3 years before death, older age-groups do not use inpatient hospital services more than younger age-groups. However, they do use more accident and emergency department services. 2. No compression in morbidity was demonstrated. 3. Data obtained from this retrospective study may be used to project future usage for each type of service as a result of the changing age structure of the population, so as to facilitate health care planning. 4. Health care costs as a result of the changing age structure of populations may also be estimated more accurately, instead of assuming a linear increase in all types of services with age.published_or_final_versio

    Grain Physics and Rosseland Mean Opacities

    Full text link
    Tables of mean opacities are often used to compute the transfer of radiation in a variety of astrophysical simulations from stellar evolution models to proto-planetary disks. Often tables, such as Ferguson et al. (2005), are computed with a predetermined set of physical assumptions that may or may not be valid for a specific application. This paper explores the effects of several assumptions of grain physics on the Rosseland mean opacity in an oxygen rich environment. We find that changing the distribution of grain sizes, either the power-law exponent or the shape of the distribution, has a marginal effect on the total mean opacity. We also explore the difference in the mean opacity between solid homogenous grains and grains that are porous or conglomorations of several species. Changing the amount of grain opacity included in the mean by assuming a grain-to-gas ratio significantly affects the mean opacity, but in a predictable way.Comment: 19 pages, 6 figures, accepted for publication in Ap

    Small size boundary effects on two-pion interferometry

    Full text link
    The Bose-Einstein correlations of two identically charged pions are derived when these particles, the most abundantly produced in relativistic heavy ion collisions, are confined in finite volumes. Boundary effects on single pion spectrum are also studied. Numerical results emphasize that conventional formulation usually adopted to describe two-pion interferometry should not be used when the source size is small, since this is the most sensitive case to boundary effects. Specific examples are considered for better illustration.Comment: more discussion on Figure4 and diffuse boundar
    corecore