1,238 research outputs found
Structure of a liquid crystalline fluid around a macroparticle: Density functional theory study
The structure of a molecular liquid, in both the nematic liquid crystalline
and isotropic phases, around a cylindrical macroparticle, is studied using
density functional theory. In the nematic phase the structure of the fluid is
highly anisotropic with respect to the director, in agreement with results from
simulation and phenomenological theories. On going into the isotropic phase the
structure becomes rotationally invariant around the macroparticle with an
oriented layer at the surface.Comment: 10 pages, 6 figues. Submitted to Phys. Rev.
Investigation of -dependent dynamical heterogeneity in a colloidal gel by x-ray photon correlation spectroscopy
We use time-resolved X-Photon Correlation Spectroscopy to investigate the
slow dynamics of colloidal gels made of moderately attractive carbon black
particles. We show that the slow dynamics is temporally heterogeneous and
quantify its fluctuations by measuring the variance of the instantaneous
intensity correlation function. The amplitude of dynamical fluctuations has a
non-monotonic dependence on scattering vector , in stark contrast with
recent experiments on strongly attractive colloidal gels [Duri and Cipelletti,
\textit{Europhys. Lett.} \textbf{76}, 972 (2006)]. We propose a simple scaling
argument for the -dependence of fluctuations in glassy systems that
rationalizes these findings.Comment: Final version published in PR
Shear band dynamics from a mesoscopic modeling of plasticity
The ubiquitous appearance of regions of localized deformation (shear bands)
in different kinds of disordered materials under shear is studied in the
context of a mesoscopic model of plasticity. The model may or may not include
relaxational (aging) effects. In the absence of relaxational effects the model
displays a monotonously increasing dependence of stress on strain-rate, and
stationary shear bands do not occur. However, in start up experiments transient
(although long lived) shear bands occur, that widen without bound in time. I
investigate this transient effect in detail, reproducing and explaining a t^1/2
law for the thickness increase of the shear band that has been obtained in
atomistic numerical simulations. Relaxation produces a negative sloped region
in the stress vs. strain-rate curve that stabilizes the formation of shear
bands of a well defined width, which is a function of strain-rate. Simulations
at very low strain-rates reveal a non-trivial stick-slip dynamics of very thin
shear bands that has relevance in the study of seismic phenomena. In addition,
other non-stationary processes, such as stop-and-go, or strain-rate inversion
situations display a phenomenology that matches very well the results of recent
experimental studies.Comment: 10 pages, 10 figure
Viscoelasticity of two-layer-vesicles in solution
The dynamic shape relaxation of the two-layer-vesicle is calculated. In
additional to the undulation relaxation where the two bilayers move in the same
direction, the squeezing mode appears when the gap between the two bilayers is
small. At large gap, the inner vesicle relaxes much faster, whereas the slow
mode is mainly due to the outer layer relaxation. We have calculated the
viscoelasticity of the dilute two-layer-vesicle suspension. It is found that
for small gap, the applied shear drives the undulation mode strongly while the
slow squeezing mode is not much excited. In this limit the complex viscosity is
dominated by the fast mode contribution. On the other hand, the slow mode is
strongly driven by shear for larger gap. We have determined the crossover gap
which depends on the interaction between the two bilayers. For a series of
samples where the gap is changed systematically, it is possible to observe the
two amplitude switchings
Effective Interactions and Volume Energies in Charge-Stabilized Colloidal Suspensions
Charge-stabilized colloidal suspensions can be conveniently described by
formally reducing the macroion-microion mixture to an equivalent one-component
system of pseudo-particles. Within this scheme, the utility of a linear
response approximation for deriving effective interparticle interactions has
been demonstrated [M. J. Grimson and M. Silbert, Mol. Phys. 74, 397 (1991)].
Here the response approach is extended to suspensions of finite-sized macroions
and used to derive explicit expressions for (1) an effective electrostatic pair
interaction between pseudo-macroions and (2) an associated volume energy that
contributes to the total free energy. The derivation recovers precisely the
form of the DLVO screened-Coulomb effective pair interaction for spherical
macroions and makes manifest the important influence of the volume energy on
thermodynamic properties of deionized suspensions. Excluded volume corrections
are implicitly incorporated through a natural modification of the inverse
screening length. By including nonlinear response of counterions to macroions,
the theory may be generalized to systematically investigate effective many-body
interactions.Comment: 13 pages (J. Phys.: Condensed Matter, in press
Structure characterization of hard sphere packings in amorphous and crystalline states
The channel size distribution in hard sphere systems, based on the local
neighbor correlation of four particle positions, is investigated for all volume
fractions up to jamming. For each particle, all three particle combinations of
neighbors define channels, which are relevant for the concept of caging. The
analysis of the channel size distribution is shown to be very useful in
distinguishing between gaseous, liquid, partially and fully crystallized, and
glassy (random) jammed states. A common microstructural feature of four
coplanar particles is observed in crystalline and glassy jammed states,
suggesting the presence of "hidden" two-dimensional order in three-dimensional
random close packings.Comment: 5 pages, 5 figure
Influence of polydispersity on the critical parameters of an effective potential model for asymmetric hard sphere mixtures
We report a Monte Carlo simulation study of the properties of highly
asymmetric binary hard sphere mixtures. This system is treated within an
effective fluid approximation in which the large particles interact through a
depletion potential (R. Roth {\em et al}, Phys. Rev. E{\bf 62} 5360 (2000))
designed to capture the effects of a virtual sea of small particles. We
generalize this depletion potential to include the effects of explicit size
dispersity in the large particles and consider the case in which the particle
diameters are distributed according to a Schulz form having degree of
polydispersity 14%. The resulting alteration (with respect to the monodisperse
limit) of the metastable fluid-fluid critical point parameters is determined
for two values of the ratio of the diameters of the small and large particles:
and . We find that inclusion of
polydispersity moves the critical point to lower reservoir volume fractions of
the small particles and high volume fractions of the large ones. The estimated
critical point parameters are found to be in good agreement with those
predicted by a generalized corresponding states argument which provides a link
to the known critical adhesion parameter of the adhesive hard sphere model.
Finite-size scaling estimates of the cluster percolation line in the one phase
fluid region indicate that inclusion of polydispersity moves the critical point
deeper into the percolating regime. This suggests that phase separation is more
likely to be preempted by dynamical arrest in polydisperse systems.Comment: 11 pages, 10 figure
Colloidal electrophoresis: Scaling analysis, Green-Kubo relation, and numerical results
We consider electrophoresis of a single charged colloidal particle in a
finite box with periodic boundary conditions, where added counterions and salt
ions ensure charge neutrality. A systematic rescaling of the electrokinetic
equations allows us to identify a minimum set of suitable dimensionless
parameters, which, within this theoretical framework, determine the reduced
electrophoretic mobility. It turns out that the salt-free case can, on the Mean
Field level, be described in terms of just three parameters. A fourth
parameter, which had previously been identified on the basis of straightforward
dimensional analysis, can only be important beyond Mean Field. More complicated
behavior is expected to arise when further ionic species are added. However,
for a certain parameter regime, we can demonstrate that the salt-free case can
be mapped onto a corresponding system containing additional salt. The
Green-Kubo formula for the electrophoretic mobility is derived, and its
usefulness demonstrated by simulation data. Finally, we report on
finite-element solutions of the electrokinetic equations, using the commercial
software package COMSOL.Comment: To appear in Journal of Physics: Condensed Matter - special issue on
occasion of the CODEF 2008 conferenc
Spin models for orientational ordering of colloidal molecular crystals
Two-dimensional colloidal suspensions exposed to periodic external fields
exhibit a variety of molecular crystalline phases. There two or more colloids
assemble at lattice sites of potential minima to build new structural entities,
referred to as molecules. Using the strength of the potential and the filling
fraction as control parameter, phase transition to unconventional
orientationally ordered states can be induced. We introduce an approach that
focuses at the discrete set of orientational states relevant for the phase
ordering. The orientationally ordered states are mapped to classical spin
systems. We construct effective hamiltonians for dimeric and trimeric molecules
on triangular lattices suitable for a statistical mechanics discussion. A
mean-field analysis produces a rich phase behavior which is substantiated by
Monte Carlo simulations.Comment: 19 pages, 21 figures; misplacement of Fig.3 fixe
Effect of bond lifetime on the dynamics of a short-range attractive colloidal system
We perform molecular dynamics simulations of short-range attractive colloid
particles modeled by a narrow (3% of the hard sphere diameter) square well
potential of unit depth. We compare the dynamics of systems with the same
thermodynamics but different bond lifetimes, by adding to the square well
potential a thin barrier at the edge of the attractive well. For permanent
bonds, the relaxation time diverges as the packing fraction
approaches a threshold related to percolation, while for short-lived bonds, the
-dependence of is more typical of a glassy system. At intermediate
bond lifetimes, the -dependence of is driven by percolation at low
, but then crosses over to glassy behavior at higher . We also
study the wavevector dependence of the percolation dynamics.Comment: Revised; 9 pages, 9 figure
- …