196 research outputs found

    Comparative experimental and Density Functional Theory (DFT) study of the physical properties of MgB2 and AlB2

    Full text link
    In present study, we report an inter-comparison of various physical and electronic properties of MgB2 and AlB2. Interestingly, the sign of S(T) is +ve for MgB2 the same is -ve for AlB2. This is consistent our band structure plots. We fitted the experimental specific heat of MgB2 to Debye Einstein model and estimated the value of Debye temperature (theta) and Sommerfeld constant (gamma) for electronic specific heat. Further, from gamma the electronic density of states (DOS) at Fermi level N(EF) is calculated. From the ratio of experimental N (EF) and the one being calculated from DFT, we obtained value of Lembda to be 1.84, thus placing MgB2 in the strong coupling BCS category. The electronic specific heat of MgB2 is also fitted below Tc using pi-model and found that it is a two gap superconductor. The calculated values of two gaps are in good agreement with earlier reports. Our results clearly demonstrate that the superconductivity of MgB2 is due to very large phonon contribution from its stretched lattice. The same two effects are obviously missing in AlB2 and hence it is not superconducting. DFT calculations demonstrated that for MgB2 the majority of states come from Sigma and Pi 2p states of boron on the other hand Sigma band at Fermi level for AlB2 is absent. This leads to a weak electron phonon coupling and also to hole deficiency as Pi bands are known to be of electron type and hence obviously the AlB2 is not superconducting. The DFT calculations are consistent with the measured physical properties of the studied borides, i.e., MgB2 and AlB2Comment: 16 pages Text + Figs: comments/suggestions welcome ([email protected])/www.freewebs.com/vpsawana

    Synthesis of SmFeAsO by an Easy and Versatile Route and its Physical Property Characterization

    Get PDF
    We report synthesis, structure, electrical transport and heat capacity of SmFeAsO. The title compound is synthesized by one-step encapsulation of stoichiometric FeAs, Sm, and Sm2O3 in an evacuated (10-5 Torr) quartz tube by prolong (72 hours) annealing at 1100oC. The as synthesized compound is crystallized in tetragonal structure with P4/nmm space group having lattice parameters a = 3.93726(33) A and c = 8.49802(07) A. The resistance (R-T) measurements on the compound exhibited ground state spin-density-wave (SDW)-like metallic steps below 140 K. Heat capacity CP(T) measurements on the title compound, showed an anomaly at around 140 K, which is reminiscent of the SDW ordering of the compound. At lower temperatures the CP(T) shows a clear peak at around 4.5 K. At lower temperature below 20 K, Cp(T) is also measured under an applied field of 7 Tesla. It is concluded that the CP(T) peak at 4.5 K is due to the anti-ferromagnetic(AFM) ordering of Sm3+ spins. These results are in confirmation with ordering of Sm in Sm2-xCexCuO4.Comment: 9 pages Text + Figs Contact Author ([email protected]

    Analysis of transient interactions between a PWR nuclear power plant and a faulted electricity grid

    Get PDF
    This paper presents the transient stability analysis of a pressurised water-type nuclear power plant following faults and disturbances affecting the electricity grid to which it is connected. The modelled nuclear plant consists of various integrated subsystems, such as core neutronics and thermal-hydraulics, piping and plenum, pressuriser, steam generator, turbine, governor, and dynamics shaft, in addition to the turbine-speed controller. The nonlinear nuclear power plant model is linearised at the operating point to acquire a linear model for controller design. The turbine-speed control loop effectively enacts a closed-loop implementation of the nuclear power plant connected to the electric grid. The various transient stability enhancement components such as the power system stabiliser, static var compensator, and static synchronous compensator are employed to test performance during severe contingencies. The interaction between the nuclear power plant, electric grid, and protection system is studied under various scenarios such as single-phase fault, three-phase fault, and permanent load loss. The performance of the nonlinear plant is further observed during load-following operation. The dynamic behaviour of the overall system is analysed using simulations in the MATLAB/Simulink/Simscape environment

    High Field Performance of Nano-Diamond Doped MgB2 Superconductor

    Get PDF
    Polycrystalline MgB2-nDx (x= 0 to 0.1) samples are synthesized by solid-state route with ingredients of Mg, B and n-Diamond. The results from magneto-transport and magnetization of nano-diamond doped MgB2-nDx are reported. Superconducting transition temperature (Tc) is not affected significantly by x up to x = 0.05 and latter decreases slightly for higher x > 0.05. R(T) vs H measurements show higher Tc values under same applied magnetic fields for the nano-diamond added samples, resulting in higher estimated Hc2 values. From the magnetization measurements it was found that irreversibility field value Hirr for the pristine sample is 7.5 Tesla at 4 K and the same is increased to 13.5 Tesla for 3-wt% nD added sample at the same temperature. The Jc(H) plots at all temperatures show that Jc value is lowest at all applied fields for pristine MgB2 and the sample doped with 3-wt% nD gives the best Jc values at all fields. For the pure sample the value of Jc is of the order of 105 A/cm2 at lower fields but it decreases very fast as the magnetic field is applied and becomes negligible above 7 Tesla. The Jc is 40 times higher than pure MgB2 at 10 K at 6 Tesla field in case of 3%nD doped sample and its value is still of the order of 103 A/cm2 at 10 Tesla for the same sample. On the other hand at 20K the 5%nD sample shows the best performance at higher fields. These results are discussed in terms of extrinsic pinning due to dispersed n-Diamond in the host MgB2 matrix along with the intrinsic pinning due to possible substitution of C at Boron site and increased inter-band scattering for highly doped samples resulting in extraordinary performance of the doped system.Comment: 12 PAGES (TEXT+FIGS). ACCEPTED: J. APPL.PHYS. (MMM-2007 Proceedings

    Anomalous heat capacity and X-ray photoelectron spectroscopy of Superconducting FeSe1/2Te1/2

    Get PDF
    The bulk polycrystalline sample FeSe1/2Te1/2 is synthesized by solid state reaction route in an evacuated sealed quartz tube at 750 oC. The presence of superconductivity is confirmed through magnetization/thermoelectric/resistivity studies. It is found that the superconducting transition temperature (Tc) is around 12 K. Heat capacity (Cp) of superconducting FeSe1-xTex exhibited a hump near Tc, instead of well defined Lambda transition. X-ray Photo electron spectroscopy (XPS) studies revealed well defined positions for divalent Fe, Se and Te but with sufficient hybridization of Fe (2p) and Se/Te (3d) core levels. In particular divalent Fe is shifted to higher BE (binding energy) and Se and Te to lower. The situation is similar to that as observed earlier for famous Cu based HTSc (High Tc superconductors), where Cu (3d) orbital hybridizes with O (2p). We also found the satellite peak of Fe at 712.00 eV, which is attributed to charge carrier localization induced by Fe at 2c site.Comment: 12 pages text + Figs contact Author-VPS Awana (www.freewebs.com/vpsawana
    • …
    corecore