203 research outputs found

    АНАЛІЗ ПІДХОДІВ ДО ФОРМУВАННЯ КОМАНДИ УПРАВЛІННЯ ПРОЕКТАМИ НА ПРИКЛАДІ ЕКІПАЖІВ МОРСЬКИХ СУДЕН

    Get PDF
    In the article, the authors examined the problematic aspects of project management; the study focuses on the optimization of the crew of the vessel — the project team based on the concept method. Within the framework of the approach proposed by the authors, a model has been developed for the formation of the crew of the vessel — the project team, which allows one to identify its composition, the most suitable and stable (balanced) for managing a specific project in terms of its competence, complementarity of crew members on the vessel (synergism) and its psychological characteristics. The use of the project management system implies the creation of a special group, the crew of a ships (project team), which becomes an independent participant of the project and manages the process of sending and forming the crew of the vessel within the project being implemented. This group is created for the period of project implementation and after its completion it is dissolved. Human resource planning — an estimate of the size and composition of human resources in the future. The project team is the main creative component of creating the end product or service in the projects. The project team is a group of employees who work directly on the project and are subordinate to the project manager. Unfortunately, there is no adequate model and method that would allow simultaneous optimization of the composition of personnel, teams, crew. The use of deterministic models and methods in solving our problem is ineffective, since there is an inability to predict the entire list of works when planning teams of projects, crews.Розглянуто проблемні аспекти управління проектами, досліджено питання оптимізації екіпажу судна — команди проекту на базисі концептуального методу. У рамках запропонованого підходу розроблено модель формування екіпажу судна — проектної команди, що дозволяє виявити її склад, найбільш придатний і стійкий (збалансований) для управління конкретним проектом щодо його компетентності, взаємодоповнюваності членів екіпажу на судні (синергізму) та його психологічних особливостей. Використання системи управління проектами передбачає створення спеціальної групи, екіпажу (команди проекту), яка стає самостійним учасником проекту і управляє процесом відправлення та формування екіпажу судна в рамках проекту, що реалізується. Ця група створюється на період реалізації проекту і після його завершення її розпускають. Планування людських (трудових) ресурсів (human resource planning) — оцінка розмірів і складу людських ресурсів у майбутньому. Проектна команда — основний креативний компонент створення кінцевого продукту або послуги у проектах. Команда проекту (project team) — група співробітників, які безпосередньо працюють над здійсненням проекту і підлеглі керівникові проекту. На жаль, адекватної моделі та методу, які б дозволили одночасно проводити комплексну оптимізацію складу персоналу, команд, екіпажу, на сьогодні не існує. Застосування детермінованих моделей і способів при вирішенні нашого завдання неефективне, оскільки неможливо передбачити весь перелік робіт при плануванні команд проектів, екіпажів суден

    HIGH-PRESSURE METAMORPHIC ROCKS OF THE CHARA OPHIOLITE BELT (CAOB): AGE AND EXHUMATION CONDITIONS

    Get PDF
    A critical element in the construction of tectonic models of exhumation of basalts that have undergone high-pressure metamorphism is the diagnosis of synchronicity and the genetic relationship between deformations and high-pressure metamorphic changes. In this report, these issues are discussed on the example of the metabasalts of the Chara ophiolite belt. In the bottom of the basalt block with the separation of pillow lavas near the Burshabulak farm, crack-vein systems with high-pressure mineral associations were discovered and analyzed, which directly indicates their tectonic origin. It is shown that the conditions for the formation of such vein mineral associations correspond to eclogite-like rocks (P=18.5 kbar temperatures of no more than 520 °C). The age of the high-pressure metamorphism basalts of the synchronous type with deformations according to 40Ar/39Ar isotope dating of amphiboles cannot be younger than the boundary of 452±14 million years

    IMPACT INVESTMENT IN POST-WAR UKRAINE

    Get PDF
    To restore the economy of Ukraine in the post-war period, it is expedient to work out applicable communication tools with investors. With respect to the global market, there is a noticeable trend towards an increase in impact investments in 2016-2022 by $ 1,050 billion or in other words, 10.21 times. The rapid growth of impact investing at the global level testifies to the significance of investments aimed at achieving the provisions of the concept of sustainable development. The purpose of the study is to elaborate theoretical and practical provisions for information support of impact investing in order to attract financial resources to restore the economic activity of business entities in the post-war period in compliance with the sustainable development guidelines. Having conducted a study of the published non-financial reporting of large and medium-sized industrial enterprises of Ukraine, it was found that only 22.7% thereof prepare a Sustainable Development Report annually. With respect to the selected enterprises group, 91% prepare a management report in an arbitrary form and publish it on their official website. Having conducted a study of published nonfinancial reporting of large and medium-sized industrial enterprises in Ukraine, it turned out that only 22.7% of them annually prepare a Sustainable Development Report. In the selected group of enterprises, 91% prepare a management report in any form and publish it on their official website. However, given the arbitrary form of information presentation, investors cannot fully obtain up-to-date information about the company’s social policy and environmental activities. In addition, the formation of reporting on issues of sustainable development and social responsibility has not yet become widespread among Ukrainian enterprises, which hinders the development of impact investing in Ukraine. Especially with regard to increasing the investment attractiveness of Ukrainian enterprises, the structure has been clarified and meaningful recommendations have been developed regarding the information content of the Management Report, which will contribute to increasing the transparency of reporting and attract influential investors

    Mеsozoic Tectonothermal Evolution of the Zagan Metamorphic Core Complex in Western Transbaikalia: 40Ar/39Ar and FTA Dating

    Get PDF
    A model of tectonothermal evolution of the Zagan metamorphic core complex (MCC) based on the new data from 40Ar/39Ar dating of amphibole, mica, and apatite fission-track dating is discussed. A relationship with the long-range impact of processes from the collision of the North China (Amurian–North China) block with the Siberian continent in the Mesozoic era is proposed. The Zagan MСС was formed in the Cretaceous period on the southern flank of a high mountain uplift of Western Transbaikalia, composed of late Paleozoic granitoids of the Angara–Vitim batholith. According to 40Ar/39Ar dating of amphiboles and micas from the mylonite zone, the active development time of the Zagan MCC corresponds to the early Cretaceous epoch (131, 114 Ma). The tectonic exposure of the core from about 15 km to the depths of about 10 km occurred at a rate of tectonic erosion of 0.4–0.3 mm/year as a result of post-collisional extension of the Mongol–Okhotsk orogen. Apatite fission-track dating shows that further exhumation and cooling of the rocks to about 3 km occurred in the lower-upper Cretaceous epoch (112, 87 Ma). The erosional denudation rate was about 0.3 mm/year.MCC- metamorphic core complexes, AFT- apatite fission-trac

    ИЗОТОПНЫЙ ВОЗРАСТ И ПАЛЕОГЕОДИНАМИЧЕСКАЯ ПОЗИЦИЯ УЛЬТРАКАЛИЕВОГО МАГМАТИЗМА ЦЕНТРАЛЬНОЙ ЧУКОТКИ

    Get PDF
    The 40Ar/39Ar dating of ultrapotassic rocks from Central Chukotka shows that these rocks are Early Cretaceous, and yields a narrow range of age variations (109 to 107 Ma), which correlates fairly well with the range of age variations of granitoids typical of the study area (117–105 Ma). There are thus grounds to suggest that the ultrapotassic magmas and granitoids resulted from the same geological process that can be identified from the material characteristics of the ultrapotassic magmas.In the modern concepts of the regional geological development, the formation of the granitoid and ultrapotassic magmas can be related to the continental lithosphere extension due to the collision of Eurasian plate and the Chukotka – Arctic Alaska continental block.Using modern genetic models based on the interpretations of the material characteristics of ultrapotassic magmas, it is possible to limit the number of genetic hypotheses and to relate the continental lithosphere extension to the processes that took place in the upper mantle of the study area.Выполненное 40Ar/39Ar датирование ультракалиевых пород Центральной Чукотки показало, что они имеют раннемеловой возраст при узком интервале его вариаций от 109 до 107 млн лет. Этот интервал довольно хорошо укладывается в пределы колебания возраста гранитоидов региона (117–105 млн лет), что позволяет связать образование производных ультракалиевых магм и гранитоидов с единым геологическим процессом и использовать вещественную характеристику ультракалиевых магм для его идентификации.Согласно современным представлениям о геологическом развитии региона, образование гранитоидных и ультракалиевых магм может быть связано с процессами растяжения континентальной литосферы, возникшего после завершения коллизии Евразии с континентальным блоком Чукотка – Арктическая Аляска.Использование современных генетических моделей, основанных на интерпретации особенностей вещественной характеристики ультракалиевых магм, позволяет ограничить число генетических гипотез и связать растяжение континентальной литосферы с процессами, протекавшими в верхней мантии региона

    Relativistic spin-orbit interactions of photons and electrons

    Get PDF
    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.This work was supported by MURI Center for Dynamic Magneto-Optics via the AFOSR Award No. FA9550-14- 1-0040, the Japan Society for the Promotion of Science (KAKENHI), the IMPACT program of JST, CREST Grant No. JPMJCR1676, JSPS-RFBR Grant No. 17-52-50023, the Sir John Templeton Foundation, the RIKEN-AIST Challenge Research Fund, and the Australian Research Council

    LYSAN ALKALINE-ULTRABASIC COMPLEX (EASTERN SAYAN): AGE AND GEODYNAMIC CONSEQUENCES

    Get PDF
    This paper presents new ideas about the formational identity, as well as the first data on the age of formation of rocks within the Lysan intrusive complex located at junction of the Derbin block and the Sisim-Kazyr zone of the Central Asian folded belt. The study identified the similarities between the Lysan complex and intrusions of the alkaline-ultrabasic formation. It formed during the period of maximum intraplate activity along the edge of the Siberian craton

    ТЕКТОНОТЕРМАЛЬНАЯ ЭВОЛЮЦИЯ ЗАГАНСКОГО КОМПЛЕКСА МЕТАМОРФИЧЕСКОГО ЯДРА ЗАБАЙКАЛЬЯ: РЕЗУЛЬТАТ ПОСТКОЛЛИЗИОННОГО РАЗРУШЕНИЯ МОНГОЛО-ОХОТСКОГО ОРОГЕНА В МЕЛУ – ПАЛЕОЦЕНЕ

    Get PDF
    Thermochronological reconstructions of the Zagan metamorphic core complex were carried out using samples from the central part of the core, mylonite zone detachment and lower nappe with U/Pb zircon dating, 40Ar/39Ar amphibole and mica dating, and apatite fission-track dating. In the tectonothermal evolution of the metamorphic core, there was distinguished an active phase (tectonic denudation) of the dome structure formation during the Early Cretaceous (131–114 Ma), which continued in the Late Cretaceous – Paleocene (111–54 Ma) in passive phase (erosive denudation). During an active phase, there was initiated a large-amplitude gently dipping normal fault (detachment), which was accompanied by tilting (sliding of rocks along subparallel listric faults). As a result, about 7 km thick rock strata underwent denudation over 17 Ma at a rate of about 0.4 mm/year. In passive phase, about 6 km thick rock strata were eroded over 57 Ma, with a denudation rate of about 0.1 mm/year. Thus, the Zagan metamorphic core complex was tectonically exposed from the mid-crust to depths of about 9 km in the Early Cretaceous as a result of post-collisional collapse of the Mongol-Okhotsk orogen. Further cooling of the rocks in the metamorphic core to depths of about 3 km occurred in the Late Cretaceous – Pliocene as a result of destruction of more than 6 km high mountains.Термохронологические реконструкции Заганского комплекса метаморфического ядра проводились по образцам центральной части ядра, зоны милонитов из детачмента и нижней части покрова с использованием U/Pb датирования циркона, 40Ar/39Ar датирования амфибола и слюд, трекового датирования апатита. В тектонотермальной эволюции метаморфического ядра выделена активная фаза (тектоническая денудация) в период раннего мела (131–114 млн лет), которая продолжилась в позднем мелу – палеоцене (111–54 млн лет) пассивной фазой (эрозионная денудация). В активную фазу произошла инициация крупноамплитудного пологопадающего сброса (детачмента), которая сопровождалась сползанием пород по субпараллельным листрическим сбросам. В результате за 17 млн лет было денудировано около 7 км мощности пород со скоростью около 0.4 мм/год. В пассивную фазу за 57 млн лет было размыто около около 6 км со скоростью денудации около 0.1 мм/год. Таким образом, тектоническая экспозиция Заганского метаморфического ядра со средних уровней коры до глубин около 9 км осуществлялась в раннем мелу в результате постколлизионного растяжения Монголо-Охотского орогена. Дальнейшее охлаждение пород метаморфического ядра до глубины около 3 км происходило в позднем мелу – плиоцене в результате разрушения горного поднятия, имеющего высоту более 6 км
    corecore