186 research outputs found

    Magnetite: Raman study of the high-pressure and low-temperature effects

    Full text link
    We report the results of a low-temperature (300K-15K) high-pressure (up to 22GPa) Raman study of the Verwey transition in magnetite (Fe3O4). We use additional Raman modes observed below the Verwey transition to determine how the transition temperature changes with the quasihydrostatic pressure. Increase of the pressure results in the linear decrease of the Verwey transition temperature, with no discontinuity. The corresponding pressure coefficient dTV/dP is found to be ~ -5.2 K/GPa. Such a decrease is substantially larger than the one predicted by the mean-field Coulomb interaction model of the transition

    Superconductivity in the Chalcogens up to Multimegabar Pressures

    Full text link
    Highly sensitive magnetic susceptibility techniques were used to measure the superconducting transition temperatures in S up to 231(±\pm5) GPa. S transforms to a superconductor with Tc_c of 10 K and has a discontinuity in T_c dependence at 160 GPa corresponding to bco to beta-Po phase transition. Above this pressure T_c in S has a maximum reaching about 17.3(+/-0.5) K at 200 GPa and then slowly decreases with pressure to 15 K at 230 GPa. This trend in the pressure dependence parallels the behavior of the heavier members Se and Te. Superconductivity in Se was also observed from 15 to 25 GPa with T_c changing from 4 to 6 K and above 150 GPa with T_c of 8 K. Similiarities in the T_c dependences for S, Se, and Te, and the implications for oxygen are discussed.Comment: 4 pages, 10 figure

    Signatures of pressure induced superconductivity in insulating Bi2212

    Full text link
    We have performed several high pressure electrical resistance experiments on Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212 family of copper oxide superconductors. We find a resistive anomaly, a downturn at low temperature, that onsets with applied pressure in the 20-40 kbar range. Through both resistance and magnetoresistance measurements, we identify this anomaly as a signature of induced superconductivity. Resistance to higher pressures decreases Tc, giving a maximum of 10 K. The higher pressure measurements exhibit a strong sensitivity to the hydrostaticity of the pressure environment. We make comparisons to the pressure induced superconductivity now ubiquitous in the iron arsenides.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping

    Full text link
    We report high-pressure low-temperature Raman studies of the Verwey transition in pure and Al-doped magnetite (Fe_3O_4). The low temperature phase of magnetite displays a number of additional Raman modes that serve as transition markers. These transition markers allow one to investigate the effect of hydrostatic pressure on the Verwey transition temperature. Al-doped magnetite Fe_2.8Al_0.2O_4 (TV=116.5K) displays a nearly linear decrease of the transition temperature with an increase of pressure yielding dP/dT_V = -0.096 GPa/K. In contrast pure magnetite displays a significantly steeper slope of the PT equilibrium line with dP/dT_V = -0.18 GPa/K. The slope of the PT equilibrium lines is related to the changes of the molar entropy and molar volume at the transition. We compare our spectroscopic data with that obtained from the ambient pressure specific heat measurements and find a good agreement in the optimally doped magnetite. Our data indicates that Al doping leads to a smaller entropy change and larger volume expansion at the transition. Our data displays the trends that are consistent with the mean field model of the transition that assumes charge ordering in magnetite.Comment: 17 pages, 3 figure
    • …
    corecore