863 research outputs found

    The quasiparticle band gap in the topological insulator Bi2Te3

    Get PDF
    We present a theoretical study of dispersion of states which form the bulk band-gap edges in the three-dimensional topological insulator Bi2Te3. Within density functional theory, we analyze the effect of atomic positions varying within the error range of the available experimental data and approximation chosen for the exchange-correlation functional on the bulk band gap and k-space location of valence- and conduction-band extrema. For each set of the positions with different exchange-correlation functionals, we show how many-body corrections calculated within a one-shot GW approach affect the mentioned characteristics of electronic structure of Bi2Te3. We thus also illustrate to what degree the one-shot GW results are sensitive to the reference one-particle band structure in the case of bismuth telluride. We found that for this topological insulator the GW corrections enlarge the fundamental band gap and for certain atomic positions and reference band structure bring its value in close agreement with experiment.Comment: 12 pages, 6 figures, 5 table

    Native ultrametricity of sparse random ensembles

    Full text link
    We investigate the eigenvalue density in ensembles of large sparse Bernoulli random matrices. We demonstrate that the fraction of linear subgraphs just below the percolation threshold is about 95\% of all finite subgraphs, and the distribution of linear chains is purely exponential. We analyze in detail the spectral density of ensembles of linear subgraphs, discuss its ultrametric nature and show that near the spectrum boundary, the tail of the spectral density exhibits a Lifshitz singularity typical for Anderson localization. We also discuss an intriguing connection of the spectral density to the Dedekind η\eta-function. We conjecture that ultrametricity is inherit to complex systems with extremal sparse statistics and argue that a number-theoretic ultrametricity emerges in any rare-event statistics.Comment: 24 pages, 9 figure
    corecore