102 research outputs found

    High Energy High Repetition Rate P-P Lasers.

    Get PDF
    A technique for obtaining of the repetitively pulsed operating regime in high-power wide-aperture lasers is proposed and experimentally realized. In this regime, the laser emits a train of pulses with duration of 100–150 ns and a pulse repetition rate of several tens of kilohertz. The main properties of the pulsed regime are theoretically analyzed and the proposed technique is tested in detail employing a test-bench gas-dynamic laser. The results of the test confirmed the conclusions of the theoretical analysis. The possibility of a repetitively pulsed regime in high-power wide-aperture lasers realization without significant reduction in the average output power is experimentally demonstrated

    Multiply Charged Ions and Their Effective Applications

    Get PDF
    The creation of high-power lasers has opened a new era in the development of basic research and cutting-edge technologies in various fields of practical application. All this is, first of all, due to the unique properties of laser sources of high-power coherent radiation. They include: a) high monochromaticity (i.e. a small width of the emission line), which offers new opportunities in high-resolution spectroscopy; b) high spatial and temporal coherence (i.e. the occurrence of light oscillations in a coordinated manner, resulting thereby in a distinct interference pattern), which gives a strong impetus to the development of holography and optical information processing methods; c) a relatively high specific energy that can be emitted by the laser, d) a possibility of varying the length of time during which the energy stored in the laser can be emitted in a wide range of durations: from continuous to femtoseconds; e) a possibility of variations in the temporal structure of radiation from tens of Hz up to tens of GHz; and f) a small divergence, which enables tight focusing. Due to these properties, the laser power density, which can affect the substance, reaches a giant value on the order of 1020 W/cm–2. Consequently, it is possible to expose a substance to radiation whose power density exceeds all known today values characterizing natural and artificial sources. This fantastic opportunity has been thoroughly investigated in the recent decades by scientists from different countries. Clearly, by gradually increasing the laser energy and reducing the length of time during which that energy is emitted, it is possible to observe several stages of an interaction like this

    ПРОВОДЯЩИЙ КАНАЛ ДЛЯ ТРАНСМИССИИ ЭНЕРГИИ

    Get PDF
    Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF) and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of ~100  µ  in atmosphere along the  beam propagation direction. At estimated electron densities below  10 ⋅ 16 cm–3 in these filaments and laser wavelengths in the range of 0,5–1,0 mm, the plasma barely absorbs laser radiation.  In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J). An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m).Not so long ago scientific group from P. N. Lebedev has improved that result, the discharge gap – 1 m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m) electric discharge by 100-ns UV pulses. Our previous result  –  16 m long conducting channel controlled by a  laser spark at the voltage  –  3 MV  – was obtained more than 20 years ago in Russia and Japan by using pulsed CO2  laser with energy  –  0,5 kJ. An average electric field strength  was < 190 kV/m. It is still too much for efficient applications.Лазерный разряд, полученный при помощи конической оптики, является наиболее подходящим для образования проводящих каналов в атмосфере. Чаще всего рассматриваются только два типа лазеров для формирования высокопроводящих  каналов в атмосфере,  управляемых  лазерным разрядом: импульсные субмикросекундные  газовохимический лазеры (CO2, DF) и короткоимпульсные твердотельные ультрафиолетовые лазеры.Основное преимущество короткоимпульсного лазера заключается в его способности формировать сверхдлинные ионизированные каналы с  характерным диаметром ~100 мкм в атмосфере по направлению распространения луча. При расчётной плотности электронов ниже 10 ⋅ 16 см–3 в этих нитях при длине волны лазера в диапазоне 0,5–1,0 мм плазма слабо абсорбирует лазерное излучение. В данном случае длина пути, образуемого многими нитями и определяемая интенсивностью лазерного излучения, может исчисляться многими километрами при энергии фемтосекундного импульса, равной ~100 мДж. Однако такие лазеры не могут применяться для создания высокопроводимых длинных каналов в атмосфере. Активное сопротивление данного типа проводящих каналов оказывается очень высоким, и невозможно добиться сильного нагревания газа в этих каналах (<1 Дж). Электрический пробой, управляемый излучением фемтосекундного твердотельного лазера, обеспечивается  только при длине 3 м и напряжении 2 MВ в искровом промежутке (670 кВ/м).Недавно научная группа из института имени П. Н. Лебедева улучшила этот результат. При этом искровой промежуток 1 м был пробит лазерным излучением KrF посредством переключения высоковольтного (до 390 кВ/м) энергетического разряда УФ импульсами длительностью 100 наносекунд. Наш предыдущий результат – это проводящий канал длиной в 16 м, контролируемый лазерным разрядом при напряжении 3 MВ, был получен более 20 лет тому назад в России и в Японии с использованием импульсного CO2-лазера с энергией, равной 0,5 кДж. Средняя напряженность электрического поля составляла < 190 кВ/м. Таким образом, предстоит еще много сделать, чтобы добиться эффективного применения

    РАЗРАБОТКА СТРАТЕГИИ ВЕНЧУРНОЙ ИННОВАЦИОННОЙ КОМПАНИИ

    Get PDF
    Innovative companies, venture companies included, serve as locomotives of the growth of national economics. However, they are formed and operate under conditions of uncertain external and internal environment; therefore, certain strategic issues of their development can not beaddressed proceeding from traditional methods based on cash-flow discounting models. Best venture innovative company development strategy may be worked on the basis of the strategic capabilities method in conjunction with the theory of games and the real options approach. This is an incessant innovation method that unites approaches based on external and internal environment factors.Инновационные компании, в том числе венчурные, являясь локомотивом роста современных национальных экономик, создаются и развиваются в условиях неопределенности внешней и внутренней среды. Решить целый ряд стратегических вопросов развития этих компаний традиционными методами, базирующимися на моделях дисконтирования потоков денежных средств, невозможно. Наилучшей теоретической основой построения новой концепции стратегического управления венчурной инновационной компанией является метод динамических способностей в сочетании с теорией игр и с методом реальных опционов. Этот метод, объединивший внешний подход с внутренним, представляет собой путь непрерывных инноваций

    Mass Transfer Mechanism in Real Crystals by Pulsed Laser Irradiation

    Full text link
    The dynamic processes in the surface layers of metals subjected activity of a pulsing laser irradiation, which destroyed not the crystalline structure in details surveyed. The procedure of calculation of a dislocation density generated in bulk of metal during the relaxation processes and at repeated pulse laser action is presented. The results of evaluations coincide with high accuracy with transmission electron microscopy dates. The dislocation-interstitial mechanism of laser-stimulated mass-transfer in real crystals is presented on the basis of the ideas of the interaction of structure defects in dynamically deforming medium. The good compliance of theoretical and experimental results approves a defining role of the presented mechanism of mass transfer at pulse laser action on metals. The possible implementation this dislocation-interstitial mechanism of mass transfer in metals to other cases of pulsing influences is justifiedComment: 10 pages, 2 figures, Late

    On the universality of the Discrete Nonlinear Schroedinger Equation

    Full text link
    We address the universal applicability of the discrete nonlinear Schroedinger equation. By employing an original but general top-down/bottom-up procedure based on symmetry analysis to the case of optical lattices, we derive the most widely applicable and the simplest possible model, revealing that the discrete nonlinear Schroedinger equation is ``universally'' fit to describe light propagation even in discrete tensorial nonlinear systems and in the presence of nonparaxial and vectorial effects.Comment: 6 Pages, to appear in Phys. Rev.

    Проводящий канал для трансмиссии энергии

    Get PDF
    Лазерный разряд, полученный при помощи конической оптики, является наиболее подходящим для образования проводящих каналов в атмосфере. Чаще всего рассматриваются только два типа лазеров для формирования высоко-проводящих каналов в атмосфере, управляемых лазерным разрядом: импульсные субмикросекундные газово-химический лазеры (CO2, DF) и короткоимпульсные твердотельные ультрафиолетовые лазеры. Основное преимущество короткоимпульсного лазера заключается в его способности формировать сверхдлинные ионизированные каналы с характерным диаметром ~100 мкм в атмосфере по направлению распространения луча. При расчётной плотности электронов ниже 10 ⋅ 16 см–3 в этих нитях при длине волны лазера в диапазоне 0,5–1,0 мм плазма слабо абсорбирует лазерное излучение. В данном случае длина пути, образуемого многими нитями и определяемая интенсивностью лазерного излучения, может исчисляться многими километрами при энергии фемтосекундного импульса, равной ~100 мДж. Однако такие лазеры не могут применяться для создания высокопроводимых длинных каналов в атмосфере. Активное сопротивление данного типа проводящих каналов оказывается очень высоким, и невозможно добиться сильного нагревания газа в этих каналах (<1 Дж). Электрический пробой, управляемый излучением фемтосекундного твердотельного лазера, обеспечивается только при длине 3 м и напряжении 2 MВ в искровом промежутке (670 кВ/м). Недавно научная группа из института имени П. Н. Лебедева улучшила этот результат. При этом искровой промежу-ток 1 м был пробит лазерным излучением KrF посредством переключения высоковольтного (до 390 кВ/м) энергетического разряда УФ импульсами длительностью 100 наносекунд. Наш предыдущий результат – это проводящий канал длиной в 16 м, контролируемый лазерным разрядом при напряжении 3 MВ, был получен более 20 лет тому назад в России и в Японии с использованием импульсного CO2-лазера с энергией, равной 0,5 кДж. Средняя напряженность электрического поля составляла < 190 кВ/м. Таким образом, предстоит еще много сделать, чтобы добиться эффективного применения

    High-energy molecular lasers: self-controlled volume-discharge lasers and applications

    No full text
    This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications

    Проводящий канал для трансмиссии энергии

    No full text
    Лазерный разряд, полученный при помощи конической оптики, является наиболее подходящим для образования проводящих каналов в атмосфере. Чаще всего рассматриваются только два типа лазеров для формирования высоко-проводящих каналов в атмосфере, управляемых лазерным разрядом: импульсные субмикросекундные газово-химический лазеры (CO2, DF) и короткоимпульсные твердотельные ультрафиолетовые лазеры. Основное преимущество короткоимпульсного лазера заключается в его способности формировать сверхдлинные ионизированные каналы с характерным диаметром ~100 мкм в атмосфере по направлению распространения луча. При расчётной плотности электронов ниже 10 ⋅ 16 см–3 в этих нитях при длине волны лазера в диапазоне 0,5–1,0 мм плазма слабо абсорбирует лазерное излучение. В данном случае длина пути, образуемого многими нитями и определяемая интенсивностью лазерного излучения, может исчисляться многими километрами при энергии фемтосекундного импульса, равной ~100 мДж. Однако такие лазеры не могут применяться для создания высокопроводимых длинных каналов в атмосфере. Активное сопротивление данного типа проводящих каналов оказывается очень высоким, и невозможно добиться сильного нагревания газа в этих каналах (<1 Дж). Электрический пробой, управляемый излучением фемтосекундного твердотельного лазера, обеспечивается только при длине 3 м и напряжении 2 MВ в искровом промежутке (670 кВ/м). Недавно научная группа из института имени П. Н. Лебедева улучшила этот результат. При этом искровой промежу-ток 1 м был пробит лазерным излучением KrF посредством переключения высоковольтного (до 390 кВ/м) энергетического разряда УФ импульсами длительностью 100 наносекунд. Наш предыдущий результат – это проводящий канал длиной в 16 м, контролируемый лазерным разрядом при напряжении 3 MВ, был получен более 20 лет тому назад в России и в Японии с использованием импульсного CO2-лазера с энергией, равной 0,5 кДж. Средняя напряженность электрического поля составляла < 190 кВ/м. Таким образом, предстоит еще много сделать, чтобы добиться эффективного применения

    CONDUCTIVE CHANNEL FOR ENERGY TRANSMISSION

    No full text
    Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF) and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of ~100  µ  in atmosphere along the  beam propagation direction. At estimated electron densities below  10 ⋅ 16 cm–3 in these filaments and laser wavelengths in the range of 0,5–1,0 mm, the plasma barely absorbs laser radiation.  In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (&lt; 1 J). An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m).Not so long ago scientific group from P. N. Lebedev has improved that result, the discharge gap – 1 m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m) electric discharge by 100-ns UV pulses. Our previous result  –  16 m long conducting channel controlled by a  laser spark at the voltage  –  3 MV  – was obtained more than 20 years ago in Russia and Japan by using pulsed CO2  laser with energy  –  0,5 kJ. An average electric field strength  was &lt; 190 kV/m. It is still too much for efficient applications
    corecore