81 research outputs found

    Temperature dependence of nonlinear auto-oscillator linewidths: Application to spin-torque nano-oscillators

    Full text link
    The temperature dependence of the generation linewidth for an auto-oscillator with a nonlinear frequency shift is calculated. It is shown that the frequency nonlinearity creates a finite correlation time, tau, for the phase fluctuations. In the low-temperature limit in which the spectral linewidth is smaller than 1/tau, the line shape is approximately Lorentzian and the linewidth is linear in temperature. In the opposite high-temperature limit in which the linewidth is larger than 1/tau, the nonlinearity leads to an apparent "inhomogeneous broadening" of the line, which becomes Gaussian in shape and has a square-root dependence on temperature. The results are illustrated for the spin-torque nano-oscillator.Comment: 4 pages, 1 figur

    Spectroscopy of the parametric magnons excited by 4-wave process

    Get PDF
    Using a Magnetic Resonace Force Microscope, we have performed ferromagnetic resonance (FMR) spectroscopy on parametric magnons created by 4-wave process. This is achieved by measuring the differential response to a small source modulation superimposed to a constant excitation power that drives the dynamics in the saturation regime of the transverse component. By sweeping the applied field, we observe abrupt readjustement of the total number of magnons each time the excitation coincides with a parametric mode. This gives rise to ultra-narrow peaks whose linewith is lower than 5 10−65~10^{-6} of the applied field.Comment: 4 page

    Lineshape distortion in a nonlinear auto-oscillator near generation threshold: Application to spin-torque nano-oscillators

    Full text link
    The lineshape in an auto-oscillator with a large nonlinear frequency shift in the presence of thermal noise is calculated. Near the generation threshold, this lineshape becomes strongly non-Lorentzian, broadened, and asymmetric. A Lorentzian lineshape is recovered far below and far above threshold, which suggests that lineshape distortions provide a signature of the generation threshold. The theory developed adequately describes the observed behavior of a strongly nonlinear spin-torque nano-oscillator.Comment: 4 pages, 3 figure

    Time domain study of frequency-power correlation in spin-torque oscillators

    Full text link
    This paper describes a numerical experiment, based on full micromagnetic simulations of current-driven magnetization dynamics in nanoscale spin valves, to identify the origins of spectral linewidth broadening in spin torque oscillators. Our numerical results show two qualitatively different regimes of magnetization dynamics at zero temperature: regular (single-mode precessional dynamics) and chaotic. In the regular regime, the dependence of the oscillator integrated power on frequency is linear, and consequently the dynamics is well described by the analytical theory of current-driven magnetization dynamics for moderate amplitudes of oscillations. We observe that for higher oscillator amplitudes, the functional dependence of the oscillator integrated power as a function of frequency is not a single-valued function and can be described numerically via introduction of nonlinear oscillator power. For a range of currents in the regular regime, the oscillator spectral linewidth is a linear function of temperature. In the chaotic regime found at large current values, the linewidth is not described by the analytical theory. In this regime we observe the oscillator linewidth broadening, which originates from sudden jumps of frequency of the oscillator arising from random domain wall nucleation and propagation through the sample. This intermittent behavior is revealed through a wavelet analysis that gives superior description of the frequency jumps compared to several other techniques.Comment: 11 pages, 4 figures to appear in PR

    Saturation of Turbulent Drag Reduction in Dilute Polymer Solutions

    Full text link
    Drag reduction by polymers in turbulent wall-bounded flows exhibits universal and non-universal aspects. The universal maximal mean velocity profile was explained in a recent theory. The saturation of this profile and the crossover back to the Newtonian plug are non-universal, depending on Reynolds number Re, concentration of polymer cpc_p and the degree of polymerization NpN_p. We explain the mechanism of saturation stemming from the finiteness of extensibility of the polymers, predict its dependence on cpc_p and NN in the limit of small cpc_p and large Re, and present the excellent comparison of our predictions to experiments on drag reduction by DNA.Comment: 4 pages, 4 figs., included, PRL, submitte

    A Frequency-Controlled Magnetic Vortex Memory

    Get PDF
    Using the ultra low damping NiMnSb half-Heusler alloy patterned into vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile memory controlled by the frequency. A perpendicular bias magnetic field is used to split the frequency of the vortex core gyrotropic rotation into two distinct frequencies, depending on the sign of the vortex core polarity p=±1p=\pm1 inside the dot. A magnetic resonance force microscope and microwave pulses applied at one of these two resonant frequencies allow for local and deterministic addressing of binary information (core polarity)

    Configurational entropy of magnetic skyrmions as an ideal gas

    Get PDF
    The study of thermodynamics of topological defects is an important challenge to understand their underlying physics. Among them, magnetic skyrmions have a leading role for their physical properties and potential applications in storage and neuromorphic computing. In this paper, the thermodynamic statistics of magnetic skyrmions is derived. It is shown that the skyrmion free energy can be modelled via a parabolic function and the diameters statistics obeys the Maxwell-Boltzmann distribution. This allows for making an analogy between the behavior of the distribution of skyrmion diameters statistics and the diluted gas Maxwell-Boltzmann molecules distribution at thermodynamical equilibrium. The calculation of the skyrmion configurational entropy, due to thermally-induced changes of size and shape of the skyrmion, is essential for the determination of thermal fluctuations of the skyrmion energy around its average value. These results can be employed to advance the field of skyrmionics.Comment: Main text 26 pages and 6 figures. Supplementary Information 4 page

    Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal

    Full text link
    We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium whilst a wave is inside, this wave is coupled to a secondary counter-propagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency difference between the coupled waves. The effect is demonstrated with spin waves in a dynamic magnonic crystal.Comment: 5 pages, 4 figure
    • …
    corecore