6 research outputs found
Light emission from a scanning tunneling microscope: Fully retarded calculation
The light emission rate from a scanning tunneling microscope (STM) scanning a
noble metal surface is calculated taking retardation effects into account. As
in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev.
B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric
properties of tip and sample are described by experimentally measured
dielectric functions. The calculations are based on exact diffraction theory
through the vector equivalent of the Kirchoff integral. The present results are
qualitatively similar to those of the non-retarded calculations. The light
emission spectra have pronounced resonance peaks due to the formation of a
tip-induced plasmon mode localized to the cavity between the tip and the
sample. At a quantitative level, the effects of retardation are rather small as
long as the sample material is Au or Cu, and the tip consists of W or Ir.
However, for Ag samples, in which the resistive losses are smaller, the
inclusion of retardation effects in the calculation leads to larger changes:
the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These
changes improve the agreement with experiment. For a Ag sample and an Ir tip,
the quantum efficiency is 10 emitted photons in the visible
frequency range per tunneling electron. A study of the energy dissipation into
the tip and sample shows that in total about 1 % of the electrons undergo
inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear
in Phys. Rev. B (15 October 1998
Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy
Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures
Photon emission by scanning tunneling microscopy in air
A photon emission experiment has been done by Scanning Tunneling Microscopy in air. The emitted photons from a gold surface are collected in order to print side by side the STM topography and the corresponding photoemission mapping. Significant correlations can be observed between both images. The emission spectra are also collected while scanning the surface, thus yielding simultaneously a third piece of information. The results are markedly different from those obtained in ultra high vacuum.Une expérience d'émission de photons par microscopie à effet tunnel a été effectuée dans l'air. Les photons émis par une surface d'or sont collectés de manière à obtenir côte à côte une topographie STM et la cartographie photonique correspondante. Des correlations évidentes sont observées entre les deux images. Des spectres d'émission sont collectés simultanément en balayant la surface, donnant un troisième type d'information sur la surface. Les résultats sont un peu différents de ceux obtenus dans l'ultra vide