206 research outputs found

    Complexes of Cobalt(II) with Schiff Bases Derived from Salicylaldehyde & Some Amino Acids

    Get PDF
    749-75

    Quantification of benzene in groundwater sources and risk analysis in a popular South Indian Pilgrimage City – A GIS based approach

    Get PDF
    AbstractThe present research work quantified the concentration of benzene in a total of hundred groundwater samples at the proximity of petrol bunks and residential places in Madurai District. The average values recorded in Jan 2011, Feb 2011 and Mar 2011 were 0.100mgL−1 (10 times of PL), 0.138mgL−1 (14 times of PL) and 0.060mgL−1 (6 times of PL) respectively. A significant variation in the benzene level during February–March 2011 was validated through Student’s t-test analysis. Hierarchical cluster analysis using dendograms revealed the un-symmetric distribution of benzene during the study period. The cancer risk analysis at corporate locations among children was seven folds higher as compared to the risk of adults. The benzene concentration levels are interpreted using Arc Geographical Information System (Arc GIS) through thematic maps

    Improving stability of utility-tied wind generators using dynamic voltage restorer

    Get PDF
    The generation of electricity using wind power is significantly increasing and has received considerable attention in recent years. One important problem with the induction generator based wind farms is that they are vulnerable to voltage disturbances and short circuit faults. Any such disturbance may cause wind farm outages. Since wind power contribution is in considerable percentage, such outages may lead to power system stability issues and also violate the grid code requirements. Thus, improving the reliability of wind farms is essential to maintain the stability of the system. The proposed strategy is to use Dynamic Voltage Restorer (DVR), which is one of the promising devices to compensate the voltage disturbance and to improve the stability of the system. It provides the wind generator with the fault ride through capability and improves the reliability of the system. Extensive simulation results are included to illustrate the operation of DVR and fault compensation

    Defluoridation of water via Light Weight Expanded Clay Aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling

    No full text
    International audienceNatural, H2O2 and MgCl2 - modified Light Weight Expanded Clay Aggregate (LECA) were used as fluoride adsorbents. Characterization of LECA and its modified forms was done by infra-red, X-ray diffraction, scanning electron microscope and X-ray fluorescence studies. The specific surface area of HML and MGML was 3.34 and 3.97 times greater than that of NL (11.72 m2/g). Improved chemical composition of Magnesium (as oxide) to 15.6% by 2 M MgCl2 solution was ascertained through XRF results. The fluoride levels were reduced (within the safe limit of WHO: 0.5-1.5 mg/L−1) to 0.39 mg/L, 1.0 mg/L and 0.075 mg/L respectively using natural (NL), H2O2 (HML) and MgCl2 - modified LECA (MGML) at a pH of 6.0 and initial fluoride concentration of 10 g/L for an equilibrium time of 120 min. The sorption capacities of 8.53 mg/g, 17.83 mg/g and 23.86 mg/g were determined for NL, HML and MGML respectively. Validation of kinetic and isotherm models was checked for the present fluoride sorption dynamics. The thermodynamic data revealed that the present fluoride sorption was spontaneous, exothermic and ends up with decrease in randomness. Prediction of fluoride sorption mechanism for onto natural and modified LECA forms was also elucidated. Chloride and sulfate were the highly competing species against fluoride sorption. Regeneration efficiency of the spent LECA materials prompted the ability of MGML even after five cycles of adsorption-regeneration processes

    Electro-coagulation coupled Electro-floatation process: Feasible choice in Doxycycline removal from Pharmaceutical effluents

    Get PDF
    Article CC-BYInternational audienceElectrochemical treatment involving a coupled coagulation and floatation was performed in the removal of Doxycycline Hyclate (DCH) from aqueous solutions. All the experiments were carried out in an electrochemical reactor of 1.5 L which contained aluminium electrodes as cathode and anode. The removal of doxycycline hyclate (DCH) species by EC/EF was determined as a function of electrolysis time, pH, current intensity, flow rate and DCH concentration. From the observed results, it was corroborated that the DCH removal through the EC/EF process was excellent. The effective contribution from initial pH (7.03) and current intensity (5.39 mA cm-2) was very much remarkable and well apparent from flocs of good buoyancy. The removal of DCH was inversely proportional to spacing between electrodes (SBE) and circulating flow rate in the presence of the supporting NaCl electrolyte of 1 g L-1. It was also highly promoted by the addition of NaCl in comparison to NaNO3 and KCl to the electrolytic system. The compliance of four kinetic models was verified with DCH removal system. The free energy values from DKR model suggested the nature of bonding by chemical forces. Characterization by FTIR, SEM and XRD interpreted the assignments of various functional groups, surface morphology and crystalline incorporated amorphous nature, respectively of electro – generated flocs. The current efficiency and specific electrical energy consumption at optimized conditions of the EC/EF system were calculate

    On the occurrence of buckler crab Cryptopodia angulata in the coastal waters of India

    Get PDF
    464-467The trend of marine non-indigenous species in India has been increasing, with more than half of the species probably being introduced by shipping. A live specimen of buckler crab Cryptopodia angulata was found along the west coast of India at 40 m depth. The recent new records at different Indian coastal locations suggest that the crab is widening its distribution. Shipping is thought to be the possible introduction vector (via ballast) for the spread of C. angulata in the coastal waters of India. Further, the favorable environmental conditions prevalent in the Indian coastal waters may facilitate the establishment and subsequent spread of C. angulata. The invasion of this buckler crab may have negative impact on the native species. Although not present in detectable numbers, C. angulata may pose a major threat to the native species, if it establishes. Information on the establishment and distribution of C. angulata from other locations along the Indian coast would be essential to comprehensively and effectively address the threat

    Cross-Sample Validation Provides Enhanced Proteome Coverage in Rat Vocal Fold Mucosa

    Get PDF
    The vocal fold mucosa is a biomechanically unique tissue comprised of a densely cellular epithelium, superficial to an extracellular matrix (ECM)-rich lamina propria. Such ECM-rich tissues are challenging to analyze using proteomic assays, primarily due to extensive crosslinking and glycosylation of the majority of high Mr ECM proteins. In this study, we implemented an LC-MS/MS-based strategy to characterize the rat vocal fold mucosa proteome. Our sample preparation protocol successfully solubilized both proteins and certain high Mr glycoconjugates and resulted in the identification of hundreds of mucosal proteins. A straightforward approach to the treatment of protein identifications attributed to single peptide hits allowed the retention of potentially important low abundance identifications (validated by a cross-sample match and de novo interpretation of relevant spectra) while still eliminating potentially spurious identifications (global single peptide hits with no cross-sample match). The resulting vocal fold mucosa proteome was characterized by a wide range of cellular and extracellular proteins spanning 12 functional categories

    Internet of Things in Sustainable Energy Systems

    Get PDF
    Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy

    Evaluating protein cross-linking as a therapeutic strategy to stabilize SOD1 variants in a mouse model of familial ALS

    Get PDF
    Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, “S-XL6,” was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A’s in vivo half-life; and that S-XL6 crosses the blood–brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS
    corecore