19 research outputs found

    NOVEL NANOCARRIERS FOR ETHNOPHARMACOLOGICAL FORMULATIONS

    Get PDF
    A numerous novel drug delivery system has been emerged by combining herbal medicine with nanotechnology to administer drugs encompassing the enhancement of compatibility and efficacy. The herbal phytoconstituents are compatible compared to the chemical active pharmaceutical ingredients (APIs). But the therapeutic consequence of the phytoconstituent is limited due to poor aqueous solubility. Therefore, the demand to develop a system which improves the solubility of the phytomedicine is mounting rapidly. Nanotechnology plays a vital role in increasing the solubility, enhancing the bioavailability and improving the drug specificity of bioactive constituents. Nanosystems such as liposomes, nanoparticles, phytosomes, ethosomes, nanoemulsions and solid lipid nanoparticles are used to deliver the bioactive constituent at an adequate dose to the site of action and during the entire treatment period. The current review discusses the various novel drug delivery systems which have been developed to attain better therapeutic response of the herbal drug

    WETTING AND DRYING RESISTANCE OF LIME-STABILIZED EXPANSIVE SOILS MODIFIED WITH NANO-ALUMINA

    Get PDF
    Weak soil at construction sites necessitates ground improvement. Chemical stabilization is typically carried out using either lime or cement. The primary objective of this study was to assess the strength and durability of lime-stabilized soils modified with nano-alumina (NA). This study adopted the scientifically established initial consumption of lime (ICL) content for soil stabilization. In addition, nano-alumina was added in varying percentages as an auxiliary additive. It was observed that 0.5 % of nano-alumina was optimal with respect to the ICL for maximizing the soil stabilization. The stabilized soils were cured for 0, 7, 14, and 28 days. Post-curing testing revealed that the strength increased sixfold for the optimal combination, compared with the virgin soil. To understand the durability behavior of the optimal combination, the stabilized soil specimens were subjected to wetting and drying cycles after 28 days of curing. The optimal combination was nearly as durable as that of the lime-stabilized soil subjected to five cycles of wetting and drying

    The Structural Basis of Cryptosporidium-Specific IMP Dehydrogenase Inhibitor Selectivity

    Get PDF
    Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5?-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 103 selectivity for the parasite enzyme over human IMPDH2

    The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails

    Get PDF
    Since cinnamon has vitamins and minerals in addition to antioxidants compounds in its chemical composition studies have shown the potential of cinnamon supplementation on some important characteristics in the performance of birds. Thus, this study was conducted under the hypothesis that the inclusion of cinnamon in the laying quail diet could influence the performance of the birds through the expression of genes related to antioxidant activity and lipid metabolism. To test this hypothesis, 144 Japanese quail (Coturnix japonica) with an initial age of 18 weeks and average weight of 133g were distributed in a completely randomized design with two treatments: no cinnamon supplementation (NCS—control group) and with supplementation of 9g/kg of cinnamon powder (CPS). The experiment lasted for 84 days. At the end of the experimental period, six animals from each treatment were euthanized by cervical dislocation, blood was collected and organs weighed. Liver tissue was collected for gene expression and biochemical analyses. We observed a significant effect of cinnamon inclusion on the weight of the pancreas (P = 0.0418), intestine (P = 0.0209) and ovary (P = 0.0389). Lower weights of the pancreas and intestine, and a higher ovary weight was observed in birds receiving the CPS diet. Quails fed with cinnamon supplementation also had better feed conversion per egg mass (2.426 g /g, P = 0.0126), and higher triglyceride (1516.60 mg/dL, P = 0.0207), uric acid (7.40 mg/dL, P = 0.0003) and VLDL (300.40 mg/dL, P = 0.0252) contents. A decreased content of thiobarbituric acid reactive substances (TBARS) and lower catalase activity was observed in the liver of quails from the CPS diet (0.086 nmoles/mg PTN, and 2.304 H2O2/min/mg PTN, respectively). Quails from the CPS group presented significantly greater expression of FAS (fatty acid synthase, 36,03 AU), ACC (Acetyl-CoA Carboxylase, 31.33 AU), APOAI (apolipoprotein A-I, 803,9 AU), ESR2 (estrogen receptor 2, 0.73 AU) SOD (superoxide dismutase, 4,933.9 AU) and GPx7 (glutathione peroxidase 7, 9.756 AU) than quails from the control group. These results allow us to suggest that cinnamon powder supplementation in the diet of laying quails can promote balance in the metabolism and better performance through the modulation of antioxidant activity and the expression of genes related to lipid metabolism

    Load – Displacement Behaviour of a Pile on a Sloping Ground for Various L/D Ratios

    No full text
    An experimental study was carried out to understand the behaviour of a laterally loaded single pile on a slope with different length/diameter (L/D) ratios driven into cohesionless soil for a relative density of 70%. Static loading was applied in both forward and reverse directions for slopes of 1V:1.5H, 1V:2H, and 1V:2.5H for a constant L/D ratio representing flexible pile behaviour. It was observed that the load ratio (load on a sandy slope to the horizontal ground) decreased with an increase in the slope’s angle. The post-static behaviour of the pile under the same conditions was also studied to evaluate the elastic displacement, which increased with an increase in the slope’s angle. Due to the constant passive resistance under the reverse loading, the lateral load on the slope’s crest was almost equal to the horizontal ground’s condition. The effect of the L/D ratio was studied by varying the length and diameter and by maintaining the other parameter as a constant. The lateral load of a pile increased with an increase in its length and diameter

    Comparison of Encased Stone Column with Conventional Column for Varied Parameters through Experimental and Numerical Investigations

    No full text
    Installation of stone columns is a widely used stabilization method in improving the characteristics of soft clays. In this study, laboratory tests were conducted to understand the influence of column number, spacing and encasement on the load-carrying capacity of the modified soil. Unit cell concept is adopted for column diameters of 25.4 and 31.75 mm, one and two numbers of columns and spacings of 50, 70, and 90 mm under the conditions of with and without encasement. In addition to the laboratory study, finite element analysis was also done for similar parameters to understand the modified soil’s settlement characteristics and stress concentration ratio. Based on the analysis, it is understood that the load-carrying capacity increases with number of columns and spacing. Considering the influence of encasement, larger diameter columns showed a more significant increase in the load-carrying capacity when compared to the smaller diameter columns
    corecore