48 research outputs found

    Biological response to pre-mineralized starch based scaffolds for bone tissue engineering

    Get PDF
    It is known that calcium-phosphate (Ca-P) coatings are able not only to improve the bone bonding behaviour of polymeric materials, but at the same time play a positive role on enhancing cell adhesion and inducing the differentiation of osteoprogenitor cells. Recently an innovative biomimetic methodology, in which a sodium silicate gel was used as a nucleative agent, was proposed as an alternative to the currently available biomimetic coating methodologies. This methodology is especially adequate for coating biodegradable porous scaffolds. In the present work we evaluated the influence of the referred to treatment on the mechanical properties of 50/50 (wt%) blend of corn starch/ethylene-vinyl alcohol (SEVA-C) based scaffolds. These Ca-P coated scaffolds presented a compressive modulus of 224.6 ± 20.6 and a compressive strength of 24.2 ± 2.20. Cytotoxicity evaluation was performed according ISO/EN 10993 part 5 guidelines and showed that the biomimetic treatment did not have any deleterious effect on L929 cells and did not inhibit cell growth. Direct contact assays were done by using a cell line of human osteoblast like cells (SaOS-2). 3 × 105 cells were seeded per scaffold and allowed to grow for two weeks at 37 ◦C in a humidified atmosphere containing 5% CO2. Total protein quantification and scanning electron microscopy (SEM) observation showed that cells were able to grow in the pre-mineralized scaffolds. Furthermore cell viability assays (MTS test) also show that cells remain viable after two weeks in culture. Finally, protein expression studies showed that after two weeks osteopontin and collagen type I were being expressed by SaOS-2 cells seeded on the pre-mineralized scaffolds. Moreover, alkaline phosphatase (ALP) activity was higher in the supernatants collected from the pre-mineralized samples, when compared to the control samples (non Ca-P coated). This may indicate that a faster mineralization of the ECM produced on the pre-mineralized samples was occurring. Consequently, biomimetic pre-mineralization of starch based scaffolds can be a useful route for applying these materials on bone tissue engineering

    In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Get PDF
    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms

    Development of three-dimensional tissue engineered bone-oral mucosal composite models

    Get PDF
    Tissue engineering of bone and oral mucosa have been extensively studied independently. The aim of this study was to develop and investigate a novel combination of bone and oral mucosa in a single 3D in vitro composite tissue mimicking the natural structure of alveolar bone with an overlying oral mucosa. Rat osteosarcoma (ROS) cells were seeded into a hydroxyapatite/tri-calcium phosphate scaffold and bone constructs were cultured in a spinner bioreactor for 3 months. An engineered oral mucosa was fabricated by air/liquid interface culture of immortalized OKF6/TERET-2 oral keratinocytes on collagen gel-embedded fibroblasts. EOM was incorporated into the engineered bone using a tissue adhesive and further cultured prior to qualitative and quantitative assessments. Presto Blue assay revealed that ROS cells remained vital throughout the experiment. The histological and scanning electron microscope examinations showed that the cells proliferated and densely populated the scaffold construct. Micro computed tomography (micro-CT) scanning revealed an increase in closed porosity and a decrease in open and total porosity at the end of the culture period. Histological examination of bone-oral mucosa model showed a relatively differentiated parakeratinized epithelium, evenly distributed fibroblasts in the connective tissue layer and widely spread ROS cells within the bone scaffold. The feasibility of fabricating a novel bone-oral mucosa model using cell lines is demonstrated. Generating human ‘normal’ cell-based models with further characterization is required to optimize the model for in vitro and in vivo applications

    Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces

    No full text
    In this study we report on direct involvement of fluid shear stresses on the osteoblastic differentiation of marrow stromal cells. Rat bone marrow stromal cells were seeded in 3D porous titanium fiber mesh scaffolds and cultured for 16 days in a flow perfusion bioreactor with perfusing culture media of different viscosities while maintaining the fluid flow rate constant. This methodology allowed exposure of the cultured cells to increasing levels of mechanical stimulation, in the form of fluid shear stress, whereas chemotransport conditions for nutrient delivery and waste removal remained essentially constant. Under similar chemotransport for the cultured cells in the 3D porous scaffolds, increasing fluid shear forces led to increased mineral deposition, suggesting that the mechanical stimulation provided by fluid shear forces in 3D flow perfusion culture can indeed enhance the expression of the osteoblastic phenotype. Increased fluid shear forces also resulted in the generation of a better spatially distributed extracellular matrix inside the porosity of the 3D titanium fiber mesh scaffolds. The combined effect of fluid shear forces on the mineralized extracellular matrix production and distribution emphasizes the importance of mechanosensation on osteoblastic cell function in a 3D environment

    Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics.

    No full text
    Contains fulltext : 47862.pdf (publisher's version ) (Closed access)Calcium phosphate ceramics have been widely used for filling bone defects to aid in the regeneration of new bone tissue. Addition of osteogenic cells to porous ceramic scaffolds may accelerate the bone repair process. This study demonstrates the feasibility of culturing marrow stromal cells (MSCs) on porous biphasic calcium phosphate ceramic scaffolds in a flow perfusion bioreactor. The flow of medium through the scaffold porosity benefits cell differentiation by enhancing nutrient transport to the scaffold interior and by providing mechanical stimulation to cells in the form of fluid shear. Primary rat MSCs were seeded onto porous ceramic (60% hydroxyapatite, 40% beta-tricalcium phosphate) scaffolds, cultured for up to 16 days in static or flow perfusion conditions, and assessed for osteoblastic differentiation. Cells were distributed throughout the entire scaffold by 16 days of flow perfusion culture whereas they were located only along the scaffold perimeter in static culture. At all culture times, flow perfused constructs demonstrated greater osteoblastic differentiation than statically cultured constructs as evidenced by alkaline phosphatase activity, osteopontin secretion into the culture medium, and histological evaluation. These results demonstrate the feasibility and benefit of culturing cell/ceramic constructs in a flow perfusion bioreactor for bone tissue engineering applications
    corecore