245 research outputs found

    Pions in isospin asymmetric nuclei

    Get PDF
    Using a pair of the lightest mirror nuclei, 3^3He and 3^3H, we study the effect of the medium modification of pion fields on the flavor non-singlet structure function. The change of the pion fields leads to an enhancement of the flavor asymmetry of the antiquark distributions in a nucleus.Comment: 14 pages (4 figures

    Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon

    Full text link
    There are two mechanisms for the generation of an asymmetry between the strange and anti-strange quark distributions in the nucleon: nonperturbative contributions originating from nucleons fluctuating into virtual baryon-meson pairs such as ΛK\Lambda K and ΣK\Sigma K, and perturbative contributions arising from gluons splitting into strange and anti-strange quark pairs. While the nonperturbative contributions are dominant in the large-xx region, the perturbative contributions are more significant in the small-xx region. We calculate this asymmetry taking into account both nonperturbative and perturbative contributions, thus giving a more accurate evaluation of this asymmetry over the whole domain of xx. We find that the perturbative contributions are generally a few times larger in magnitude than the nonperturbative contributions, which suggests that the best region to detect this asymmetry experimentally is in the region 0.02<x<0.030.02 < x < 0.03. We find that the asymmetry may have more than one node, which is an effect that should be taken into account, e.g. for parameterizations of the strange and anti-strange quark distributions used in global analysis of parton distributions.Comment: 14 pages, 4 figures, figures comparing theoretical calculations with NNPDF global analysis added, accepted for publication in EPJ

    Joint multi-pitch detection and score transcription for polyphonic piano music

    Get PDF
    Research on automatic music transcription has largely focused on multi-pitch detection; there is limited discussion on how to obtain a machine- or human-readable score transcription. In this paper, we propose a method for joint multi-pitch detection and score transcription for polyphonic piano music. The outputs of our system include both a piano-roll representation (a descriptive transcription) and a symbolic musical notation (a prescriptive transcription). Unlike traditional methods that further convert MIDI transcriptions into musical scores, we use a multitask model combined with a Convolutional Recurrent Neural Network and Sequence-to-sequence models with attention mechanisms. We propose a Reshaped score representation that outperforms a LilyPond representation in terms of both prediction accuracy and time/memory resources, and compare different input audio spectrograms. We also create a new synthesized dataset for score transcription research. Experimental results show that the joint model outperforms a single-task model in score transcription

    Parton Distributions for the Octet and Decuplet Baryons

    Get PDF
    We calculate the parton distributions for both polarized and unpolarized octet and decuplet baryons, using the MIT bag, dressed by mesons. We show that the hyperfine interaction responsible for the ΔN\Delta - N and Σ0Λ\Sigma^0 - \Lambda splittings leads to large deviations from SU(3) and SU(6) predictions. For the Λ\Lambda we find significant polarized, non-strange parton distributions which lead to a sizable Λ\Lambda polarization in polarized, semi-inclusive epep scattering. We also discuss the flavour symmetry violation arising from the meson-cloud associated with the chiral structure of baryons.Comment: 29 pages, 15 figure

    On the Flavor Structure of the Constituent Quark

    Full text link
    We discuss the dressing of constituent quarks with a pseudoscalar meson cloud within the effective chiral quark model. SU(3) flavor symmetry breaking effects are included explicitly. Our results are compared with those of the traditional meson cloud approach in which pions are coupled to the nucleon. The pionic dressing of the constituent quarks explains the experimentally observed violation of the Gottfried Sum Rule and leads to an enhanced nonperturbative sea of quark-antiquark pairs in the constituent quark and consequently in the nucleon. We find 2.5 times more pions and 10-15 times more kaons in the nucleon than in the traditional picture.Comment: 7 pages, LaTeX, 4 Postscript figures, to appear in J. Phys.

    Nucleon Structure Functions from a Chiral Soliton in the Infinite Momentum Frame

    Get PDF
    We study the frame dependence of nucleon structure functions obtained within a chiral soliton model for the nucleon. Employing light cone coordinates and introducing collective coordinates together with their conjugate momenta, translational invariance of the solitonic quark fields (which describe the nucleon as a localized object) is restored. This formulation allows us to perform a Lorentz boost to the infinite momentum frame of the nucleon. The major result is that the Lorentz contraction associated with this boost causes the leading twist contribution to the structure functions to properly vanish when the Bjorken variable xx exceeds unity. Furthermore we demonstrate that for structure functions calculated in the valence quark approximation to the Nambu--Jona--Lasinio chiral soliton model the Lorentz contraction also has significant effects on the structure functions for moderate values of the Bjorken variable xx.Comment: 16 pages, 1 figure, revised version to be published in Int. J. Mod. Phys.

    Role of the Delta (1232) in DIS on polarized 3^3He and extraction of the neutron spin structure function g1n(x,Q2)g_{1}^{n}(x,Q^2)

    Get PDF
    We consider the effect of the transitions nΔ0n \to \Delta^{0} and pΔ+p \to \Delta^{+} in deep inelastic scattering on polarized 3^3He on the extraction of the neutron spin structure function g1n(x,Q2)g_{1}^{n}(x,Q^2). Making the natural assumption that these transitions are the dominant non-nucleonic contributions to the renormalization of the axial vector coupling constant in the A=3 system, we find that the effect of Δ\Delta increases g1n(x,Q2)g_{1}^{n}(x,Q^2) by 10÷4010 \div 40% in the range 0.05x0.60.05 \le x \le 0.6, where our considerations are applicable and most of the data for g1n(x,Q2)g_{1}^{n}(x,Q^2) exist.Comment: 23 pages, 6 figures, revte

    Playing Technique Recognition by Joint Time–Frequency Scattering

    Get PDF
    Playing techniques are important expressive elements in music signals. In this paper, we propose a recognition system based on the joint time–frequency scattering transform (jTFST) for pitch evolution-based playing techniques (PETs), a group of playing techniques with monotonic pitch changes over time. The jTFST represents spectro-temporal patterns in the time–frequency domain, capturing discriminative information of PETs. As a case study, we analyse three commonly used PETs of the Chinese bamboo flute: acciacatura, portamento, and glissando, and encode their characteristics using the jTFST. To verify the proposed approach, we create a new dataset, the CBF-petsDB, containing PETs played in isolation as well as in the context of whole pieces performed and annotated by professional players. Feeding the jTFST to a machine learning classifier, we obtain F-measures of 71% for acciacatura, 59% for portamento, and 83% for glissando detection, and provide explanatory visualisations of scattering coefficients for each technique

    A Study on the Transferability of Adversarial Attacks in Sound Event Classification

    Get PDF
    An adversarial attack is an algorithm that perturbs the input of a machine learning model in an intelligent way in order to change the output of the model. An important property of adversarial attacks is transferability. According to this property, it is possible to generate adversarial perturbations on one model and apply it the input to fool the output of a different model. Our work focuses on studying the transferability of adversarial attacks in sound event classification. We are able to demonstrate differences in transferability properties from those observed in computer vision. We show that dataset normalization techniques such as z-score normalization does not affect the transferability of adversarial attacks and we show that techniques such as knowledge distillation do not increase the transferability of attacks

    Dynamics of Light Antiquarks in the Proton

    Get PDF
    We present a comprehensive analysis of the recent data from the E866 experiment at Fermilab on Drell-Yan production in pD and pp collisions, which indicates a non-trivial x-dependence for the asymmetry between u-bar and d-bar quark distributions in the proton. The relatively fast decrease of the asymmetry at large x suggests the important role played by the chiral structure of the nucleon, in particular the pi-N and pi-Delta components of the nucleon wave function. At small x the data require an additional non-chiral component, which may be attributed to the Pauli exclusion principle as first suggested by Field and Feynman.Comment: version to appear in Phys. Rev.
    corecore