1,715 research outputs found
Probing a topological quantum critical point in semiconductor-superconductor heterostructures
Quantum ground states on the non-trivial side of a topological quantum
critical point (TQCP) have unique properties that make them attractive
candidates for quantum information applications. A recent example is provided
by s-wave superconductivity on a semiconductor platform, which is tuned through
a TQCP to a topological superconducting (TS) state by an external Zeeman field.
Despite many attractive features of TS states, TQCPs themselves do not break
any symmetries, making it impossible to distinguish the TS state from a regular
superconductor in conventional bulk measurements. Here we show that for the
semiconductor TQCP this problem can be overcome by tracking suitable bulk
transport properties across the topological quantum critical regime itself. The
universal low-energy effective theory and the scaling form of the relevant
susceptibilities also provide a useful theoretical framework in which to
understand the topological transitions in semiconductor heterostructures. Based
on our theory, specific bulk measurements are proposed here in order to
characterize the novel TQCP in semiconductor heterostructures.Comment: 8+ pages, 5 figures, Revised version as accepted in PR
How to realize a robust practical Majorana chain in a quantum dot-superconductor linear array
Semiconducting nanowires in proximity to superconductors are promising
experimental systems for Majorana fermions, which may ultimately be used as
building blocks for topological quantum computers. A serious challenge in the
experimental realization of the Majorana fermions is the supression of
topological superconductivity by disorder. We show that Majorana fermions
protected by a robust topological gap can occur at the ends of a chain of
quantum dots connected by s-wave superconductors. In the appropriate parameter
regime, we establish that the quantum dot/superconductor system is equivalent
to a 1D Kitaev chain, which can be tuned to be in a robust topological phase
with Majorana end modes even in the case where the quantum dots and
superconductors are both strongly disordered. Such a spin-orbit coupled quantum
dot - s-wave superconductor array provides an ideal experimental platform for
the observation of non-Abelian Majorana modes.Comment: 8 pages; 3 figures; version 2: Supplementary material updated to
include more general proof for localized Majorana fermion
Solidarity in Creation: Toward an Ecological Ethic for Christian Discipleship
Thesis advisor: Mary Ann HinsdaleThesis advisor: Richard J. CliffordThesis (STL) — Boston College, 2017.Submitted to: Boston College. School of Theology and Ministry.Discipline: Sacred Theology
Fokker-Planck equation with variable diffusion coefficient in the Stratonovich approach
We consider the Langevin equation with multiplicative noise term which
depends on time and space. The corresponding Fokker-Planck equation in
Stratonovich approach is investigated. Its formal solution is obtained for an
arbitrary multiplicative noise term given by , and the
behaviors of probability distributions, for some specific functions of %
, are analyzed. In particular, for , the physical
solutions for the probability distribution in the Ito, Stratonovich and
postpoint discretization approaches can be obtained and analyzed.Comment: 6 pages in LATEX cod
Compound Logics for Modification Problems
We introduce a novel model-theoretic framework inspired from graph
modification and based on the interplay between model theory and algorithmic
graph minors. The core of our framework is a new compound logic operating with
two types of sentences, expressing graph modification: the modulator sentence,
defining some property of the modified part of the graph, and the target
sentence, defining some property of the resulting graph. In our framework,
modulator sentences are in counting monadic second-order logic (CMSOL) and have
models of bounded treewidth, while target sentences express first-order logic
(FOL) properties along with minor-exclusion. Our logic captures problems that
are not definable in first-order logic and, moreover, may have instances of
unbounded treewidth. Also, it permits the modeling of wide families of problems
involving vertex/edge removals, alternative modulator measures (such as
elimination distance or -treewidth), multistage modifications, and
various cut problems. Our main result is that, for this compound logic,
model-checking can be done in quadratic time. All derived algorithms are
constructive and this, as a byproduct, extends the constructibility horizon of
the algorithmic applications of the Graph Minors theorem of Robertson and
Seymour. The proposed logic can be seen as a general framework to capitalize on
the potential of the irrelevant vertex technique. It gives a way to deal with
problem instances of unbounded treewidth, for which Courcelle's theorem does
not apply. The proof of our meta-theorem combines novel combinatorial results
related to the Flat Wall theorem along with elements of the proof of
Courcelle's theorem and Gaifman's theorem. We finally prove extensions where
the target property is expressible in FOL+DP, i.e., the enhancement of FOL with
disjoint-paths predicates
A Case of Multiple Myeloma Presenting with Diabetes Insipidus
Multiple myeloma (MM) can present with involvement of the central nervous system in the form of nerve palsy, plasma cell masses or, rarely, with endocrinological effects due to involvement of the pituitary gland. Usually, in such cases, the disease has a rapid progression and poor prognosis. We report a 52-year-old man who was admitted to the Kolkata Medical College, Kolkata, India, in 2016 with a prolonged low-grade fever and hypernatremia. Shortly afterwards, the patient began to complain of increased urinary frequency and drowsiness. The hypernatremia was treated with intranasal desmopressin and free water replacement. Serum protein electrophoresis and an immunofixation study revealed an immunoglobulin G-κ monoclonal band. Magnetic resonance imaging of the pituitary gland revealed the absence of a posterior bright spot and spotty infiltration of the pituitary fossa. A bone marrow biopsy confirmed a diagnosis of cranial diabetes insipidus due to posterior pituitary MM infiltration
Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion
The potential for the discovery of a Standard Model Higgs boson in the mass
range m_H < 2 m_Z in the vector boson fusion mode has been studied for the
ATLAS experiment at the LHC. The characteristic signatures of additional jets
in the forward regions of the detector and of low jet activity in the central
region allow for an efficient background rejection. Analyses for the H -> WW
and H -> tau tau decay modes have been performed using a realistic simulation
of the expected detector performance. The results obtained demonstrate the
large discovery potential in the H -> WW decay channel and the sensitivity to
Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil
Topological properties of superconducting junctions
Motivated by recent developments in the field of one-dimensional topological
superconductors, we investigate the topological properties of s-matrix of
generic superconducting junctions where dimension should not play any role. We
argue that for a finite junction the s-matrix is always topologically trivial.
We resolve an apparent contradiction with the previous results by taking into
account the low-energy resonant poles of s-matrix. Thus no common topological
transition occur in a finite junction. We reveal a transition of a different
kind that concerns the configuration of the resonant poles
- …