257 research outputs found

    Integrin αvβ5 is a primary receptor for adenovirus in CAR-negative cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses bind to specific cellular receptors in order to infect their hosts. The specific receptors a virus uses are important factors in determining host range, cellular tropism, and pathogenesis. For adenovirus, the existing model of entry requires two receptor interactions. First, the viral fiber protein binds Coxsackie and Adenovirus Receptor (CAR), its primary cellular receptor, which docks the virus to the cell surface. Next, viral penton base engages cellular integrins, coreceptors thought to be required exclusively for internalization and not contributing to binding. However, a number of studies reporting data which conflicts with this simple model have been published. These observations have led us to question the proposed two-step model for adenovirus infection.</p> <p>Results</p> <p>In this study we report that cells which express little to no CAR can be efficiently transduced by adenovirus. Using competition experiments between whole virus and soluble viral fiber protein or integrin blocking peptides, we show virus binding is not dependent on fiber binding to cells but rather on penton base binding cellular integrins. Further, we find that binding to low CAR expressing cells is inhibited specifically by a blocking antibody to integrin αvβ5, demonstrating that in these cells integrin αvβ5 and not CAR is required for adenovirus attachment. The binding mediated by integrin αvβ5 is extremely high affinity, in the picomolar range.</p> <p>Conclusions</p> <p>Our data further challenges the model of adenovirus infection in which binding to primary receptor CAR is required in order for subsequent interactions between adenovirus and integrins to initiate viral entry. In low CAR cells, binding occurs through integrin αvβ5, a receptor previously thought to be used exclusively in internalization. We show for the first time that integrin αvβ5 can be used as an alternate binding receptor.</p

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p

    Observation of D+KS0a0(980)+D^{+}\to K_{S}^{0}a_{0}(980)^{+} in the amplitude analysis of D+KS0π+ηD^{+} \to K_{S}^{0}\pi^+\eta

    Full text link
    We perform for the first time an amplitude analysis of the decay D+KS0π+ηD^{+}\to K_{S}^{0}\pi^+\eta and report the observation of the decay D+KS0a0(980)+D^{+}\to K_{S}^{0}a_{0}(980)^{+} using 2.93 fb1^{-1} of e+ee^+e^- collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector. As the only W-annihilation free decay among DD to a0(980)a_{0}(980)-pseudoscalar, D+KS0a0(980)+D^{+}\to K_{S}^{0}a_{0}(980)^{+} is the ideal decay to extract the contributions of the external and internal WW-emission amplitudes involving a0(980)a_{0}(980) and study the final-state interactions. The absolute branching fraction of D+KS0π+ηD^{+}\to K_{S}^{0}\pi^+\eta is measured to be (1.27±0.04stat.±0.03syst.)%(1.27\pm0.04_{\rm stat.}\pm0.03_{\rm syst.})\%. The product branching fractions of D+KS0a0(980)+D^{+}\to K_{S}^{0}a_{0}(980)^{+} with a0(980)+π+ηa_{0}(980)^{+}\to \pi^+\eta and D+π+K0(1430)0D^{+}\to \pi^+ K_0^*(1430)^0 with K0(1430)0KS0ηK_0^*(1430)^0\to K_{S}^{0}\eta are measured to be (1.33±0.05stat.±0.04syst.)%(1.33\pm0.05_{\rm stat.}\pm0.04_{\rm syst.})\% and (0.14±0.03stat.±0.01syst.)%(0.14\pm0.03_{\rm stat.}\pm0.01_{\rm syst.})\%, respectively

    Observation of the semileptonic decays D0KS0ππ0e+νeD^0\rightarrow K_S^0\pi^-\pi^0 e^+ \nu_e and D+KS0π+πe+νeD^+\rightarrow K_S^0\pi^+\pi^- e^+ \nu_e

    Full text link
    By analyzing e+ee^+e^- annihilation data corresponding to an integrated luminosity of 2.93 fb1\rm fb^{-1} collected at a center-of-mass energy of 3.773 GeV with the \text{BESIII} detector, the first observation of the semileptonic decays D0KS0ππ0e+νeD^0\rightarrow K_S^0\pi^-\pi^0 e^+ \nu_e and D+KS0π+πe+νeD^+\rightarrow K_S^0\pi^+\pi^- e^+ \nu_e is reported. With a dominant hadronic contribution from K1(1270)K_1(1270), the branching fractions are measured to be B(D0K1(1270)(KS0ππ0)e+νe)=(1.690.46+0.53±0.15)×104\mathcal{B}(D^0\rightarrow {K}_1(1270)^-(\to K^0_S\pi^-\pi^0)e^+\nu_e)=(1.69^{+0.53}_{-0.46}\pm0.15)\times10^{-4} and B(D+Kˉ1(1270)0(KS0π+π)e+νe)=(1.470.40+0.45±0.20)×104\mathcal{B}(D^+\to \bar{K}_1(1270)^0(\to K^0_S\pi^+\pi^-)e^+\nu_e)=(1.47^{+0.45}_{-0.40}\pm0.20)\times10^{-4} with statistical significance of 5.4σ\sigma and 5.6σ\sigma, respectively. When combined with measurements of the K1(1270)K+ππK_1(1270)\to K^+\pi^-\pi decays, the absolute branching fractions are determined to be B(D0K1(1270)e+νe)=(1.050.28+0.33±0.12±0.12)×103\mathcal{B}(D^0\to K_1(1270)^-e^+\nu_e)=(1.05^{+0.33}_{-0.28}\pm0.12\pm0.12)\times10^{-3} and B(D+Kˉ1(1270)0e+νe)=(1.290.35+0.40±0.18±0.15)×103\mathcal{B}(D^+\to \bar{K}_1(1270)^0e^+\nu_e)=(1.29^{+0.40}_{-0.35}\pm0.18\pm0.15)\times10^{-3}. The first and second uncertainties are statistical and systematic, respectively, and the third uncertainties originate from the assumed branching fractions of the K1(1270)KππK_1(1270)\to K\pi\pi decays.Comment: 19page

    Improved measurement of the decays ηπ+ππ+(0)π(0)\eta' \to \pi^{+}\pi^{-}\pi^{+(0)}\pi^{-(0)} and search for the rare decay η4π0\eta' \to 4\pi^{0}

    Full text link
    Using a sample of 10 billion J/ψJ/{\psi} events collected with the BESIII detector, the decays ηπ+ππ+π\eta' \to \pi^{+}\pi^{-}\pi^{+}\pi^{-}, ηπ+ππ0π0\eta' \to \pi^{+}\pi^{-}\pi^{0}\pi^{0} and η4π0\eta' \to 4 \pi^{0} are studied via the process J/ψγηJ/{\psi}\to\gamma\eta'. The branching fractions of ηπ+ππ+π\eta' \to \pi^{+}\pi^{-}\pi^{+}\pi^{-} and ηπ+ππ0\eta' \to \pi^{+}\pi^{-}\pi^{0} π0\pi^{0} are measured to be (8.56±0.25(stat.)±0.23(syst.))×105( 8.56 \pm 0.25({\rm stat.}) \pm 0.23({\rm syst.}) ) \times {10^{ - 5}} and (2.12±0.12(stat.)±0.10(syst.))×104(2.12 \pm 0.12({\rm stat.}) \pm 0.10({\rm syst.})) \times {10^{ - 4}}, respectively, which are consistent with previous measurements but with improved precision. No significant η4π0\eta' \to 4 \pi^{0} signal is observed, and the upper limit on the branching fraction of this decay is determined to be less than 1.24×1051.24 \times {10^{-5}} at the 90%90\% confidence level. In addition, an amplitude analysis of ηπ+ππ+π\eta' \to \pi^{+}\pi^{-}\pi^{+}\pi^{-} is performed to extract the doubly virtual isovector form factor α\alpha for the first time. The measured value of α=1.22±0.33(stat.)±0.04(syst.)\alpha=1.22 \pm 0.33({\rm stat.}) \pm 0.04({\rm syst.}), is in agreement with the prediction of the VMD model

    Search for a scalar partner of the X(3872)X(3872) via ψ(3770)\psi(3770) decays into γηη\gamma\eta\eta' and γπ+πJ/ψ\gamma\pi^{+}\pi^{-}J/\psi

    Full text link
    Using a data sample corresponding to an integrated luminosity of 2.93 fb1^{-1} collected at a center-of-mass energy of 3.773~GeV with the BESIII detector at the BEPCII collider, we search for a scalar partner of the X(3872)X(3872), denoted as X(3700)X(3700), via ψ(3770)γηη\psi(3770)\to \gamma\eta\eta' and γπ+πJ/ψ\gamma\pi^{+}\pi^{-}J/\psi processes. No significant signals are observed and the upper limits of the product branching fractions B(ψ(3770)γX(3700))B(X(3700)ηη) {\cal B}(\psi(3770)\to\gamma X(3700))\cdot {\cal B}(X(3700)\to \eta\eta') and B(ψ(3770)γX(3700))B(X(3700)π+πJ/ψ){\cal B}(\psi(3770)\to\gamma X(3700))\cdot {\cal B}(X(3700)\to\pi^{+}\pi^{-}J/\psi) are determined at the 90\% confidence level, for the narrow X(3700)X(3700) with a mass ranging from 3710 to 3740 MeV/c2c^2, which are from 0.8 to 1.8 (×105)(\times 10^{-5}) and 0.9 to 3.4 (×105)(\times 10^{-5}), respectively

    Measurement of branching fractions of Λc+\Lambda_{c}^{+} decays to Σ+K+K\Sigma^{+} K^{+} K^{-}, Σ+ϕ\Sigma^{+}\phi and Σ+K+π(π0)\Sigma^{+} K^{+} \pi^{-}(\pi^{0})

    Full text link
    Based on 4.5 fb1^{-1} data taken at seven center-of-mass energies ranging from 4.600 to 4.699 GeV with the BESIII detector at the BEPCII collider, we measure the branching fractions of Λc+Σ++hadrons\Lambda_{c}^{+}\rightarrow\Sigma^{+}+hadrons relative to Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow \Sigma^+ \pi^+ \pi^-. Combining with the world average branching fraction of Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow \Sigma^+ \pi^+ \pi^-, their branching fractions are measured to be (0.377±0.042±0.018±0.021)%(0.377\pm0.042\pm0.018\pm0.021)\% for Λc+Σ+K+K\Lambda_{c}^{+}\rightarrow\Sigma^{+} K^{+} K^{-}, (0.200±0.023±0.010±0.011)%(0.200\pm0.023\pm0.010\pm0.011)\% for Λc+Σ+K+π\Lambda_{c}^{+}\rightarrow\Sigma^{+} K^{+} \pi^{-}, (0.414±0.080±0.029±0.023)%(0.414\pm0.080\pm0.029\pm0.023)\% for Λc+Σ+ϕ\Lambda_{c}^{+}\rightarrow\Sigma^{+}\phi and (0.197±0.036±0.008±0.011)%(0.197\pm0.036\pm0.008\pm0.011)\% for Λc+Σ+K+K\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{+} K^{-}(non-ϕ\phi). In all the above results, the first uncertainties are statistical, the second are systematic and the third are from external input of the branching fraction of Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow \Sigma^+ \pi^+ \pi^-. Since no signal for Λc+Σ+K+ππ0\Lambda_{c}^{+}\rightarrow\Sigma^{+} K^{+} \pi^{-}\pi^{0} is observed, the upper limit of its branching fraction is determined to be 0.11\% at the 90%\% confidence level
    corecore