60 research outputs found

    Possible Technical Upgradation Programme in CI Foundries

    Get PDF
    Indian Ferrous Foundry with Cupola as a melting unit dates back to the first decade of this century. The evolution of Indian Foundry and the distribution of organized and unorg-anized foundry units and their installed capacities are given in Fig. 1 and 2. Notice the following points : We may reach 4000 units by the turn of the century. With 15% of the total number of Foundries concentrated in West Bengal, the total share of installed capacity is around 40%

    Treatment of Complex lead, Copper and Zinc sulfides

    Get PDF
    FOR the adoption of conventional methods for the recovery of lead , copper and zinc from the complex sulfide ores, it is essential that these be beneticiated to a high grade concentrate. The minerals present in such complex ores are often found in such close inter -growth that it is either difficult to obtain a suitable grade of the concentrate by physical methods or the recovery of metals in the respe-ctive concentrates is poor. For example, the zinc that finds its way to a copper concentrate is always discarded in the slag as a waste, while copper in a lead concentrate leads to serious smelting problems. In such cases the cost of production by conventional smelting process becomes unfavourable and new approaches to process the ores become more attractive

    Cell line-dependent variability in HIV activation employing DNMT inhibitors

    Get PDF
    Long-lived reservoirs of Human Immunodeficiency Virus (HIV) latently infected cells present the main barrier to a cure for HIV infection. Much interest has focused on identifying strategies to activate HIV, which would be used together with antiretrovirals to attack reservoirs. Several HIV activating agents, including Tumor Necrosis Factor alpha (TNFΞ±) and other agents that activate via NF-kB are not fully effective in all latent infection models due to epigenetic restrictions, such as DNA methylation and the state of histone acetylation. DNA methyltransferases (DNMT) inhibitors like 5-aza-2'deoxycytidine (Aza-CdR) and histone deacetylase (HDAC) inhibitors like Trichostatin A (TSA) have been proposed as agents to enhance reactivation and have shown activity in model systems. However, it is not clear how the activities of DNMT and HDAC inhibitors range across different latently infected cell lines, potential models for the many different latently infected cells within an HIV patient. We determined HIV activation following treatment with TNFΞ±, TSA and Aza-CdR across a range of well known latently infected cell lines. We assessed the activity of these compounds in four different Jurkat T cell-derived J-Lat cell lines (6.3, 8.4, 9.2 and 10.6), which have a latent HIV provirus in which GFP replaces Nef coding sequence, and ACH-2 and J1.1 (T cell-derived), and U1 (promonocyte-derived) cell lines with full-length provirus. We found that Aza-CdR plus TNFΞ± activated HIV at least twice as well as TNFΞ± alone for almost all J-Lat cells, as previously described, but not for J-Lat 10.6, in which TNFΞ± plus Aza-CdR moderately decreased activation compared to TNFΞ± alone. Surprisingly, a much greater reduction of TNFΞ±-stimulated activation with Aza-CdR was detected for ACH-2, J1.1 and U1 cells. Reaching the highest reduction in U1 cells with a 75% reduction. Interestingly, Aza-CdR not only decreased TNFΞ± induction of HIV expression in certain cell lines, but also decreased activation by TSA. Since DNMT inhibitors reduce the activity of provirus activators in some HIV latently infected cell lines the use of epigenetic modifying agents may need to be carefully optimized if they are to find clinical utility in therapies aimed at attacking latent HIV reservoirs

    HAX-1 overexpression, splicing and cellular localization in tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HAX-1 has been described as a protein potentially involved in carcinogenesis and especially metastasis. Its involvement in regulation of apoptosis and cell migration along with some data indicating its overexpression in cancer cell lines and tumors suggests that HAX-1 may play a role in neoplastic transformation. Here we present the first systematic analysis of HAX-1 expression in several solid tumors.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels of <it>HAX1 </it>splice variant I in several solid tumors. We have also analyzed by semiquantitative and quantitative RT-PCR the expression of five <it>HAX-1 </it>splice variants in breast cancer samples and in normal tissue from the same individuals. Quantitative PCR was also employed to analyze the effect of estrogen on <it>HAX1 </it>expression in breast cancer cell line. Immunohistochemical analysis of HAX-1 was performed on normal and breast cancer samples.</p> <p>Results</p> <p>The results reveal statistically important <it>HAX1 </it>up-regulation in breast cancer, lung cancer and melanoma, along with some minor variations in the splicing pattern. HAX-1 up-regulation in breast cancer samples was confirmed by immunohistochemical analysis, which also revealed an intriguing HAX-1 localization in the nuclei of the tumor cells, associated with strong ER status.</p> <p>Conclusion</p> <p>HAX-1 elevated levels in cancer tissues point to its involvement in neoplastic transformation, especially in breast cancer. The connection between HAX-1 nuclear location and ER status in breast cancer samples remains to be clarified.</p

    The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response

    Get PDF
    TANK-binding kinase 1 (TBK1) is of central importance for the induction of type-I interferon (IFN) in response to pathogens. We identified the DEAD-box helicase DDX3X as an interaction partner of TBK1. TBK1 and DDX3X acted synergistically in their ability to stimulate the IFN promoter, whereas RNAi-mediated reduction of DDX3X expression led to an impairment of IFN production. Chromatin immunoprecipitation indicated that DDX3X is recruited to the IFN promoter upon infection with Listeria monocytogenes, suggesting a transcriptional mechanism of action. DDX3X was found to be a TBK1 substrate in vitro and in vivo. Phosphorylation-deficient mutants of DDX3X failed to synergize with TBK1 in their ability to stimulate the IFN promoter. Overall, our data imply that DDX3X is a critical effector of TBK1 that is necessary for type I IFN induction

    Sexually dimorphic gene expression in the heart of mice and men

    Get PDF
    The prevalence and clinical manifestation of several cardiovascular diseases vary considerably with sex and age. Thus, a better understanding of the molecular basis of these differences may represent a starting point for an improved gender-specific medicine. Despite the fact that sex-specific differences have been observed in the cardiovascular system of humans and animal models, systematic analyses of sexual dimorphisms at the transcriptional level in the healthy heart are missing. Therefore we performed gene expression profiling on mouse and human cardiac samples of both sexes and young as well as aged individuals and verified our results for a subset of genes using real-time polymerase chain reaction in independent left ventricular samples. To tackle the question whether sex differences are evolutionarily conserved, we also compared sexually dimorphic genes between both species. We found that genes located on sex chromosomes were the most abundant ones among the sexually dimorphic genes. Male-specific expression of Y-linked genes was observed in mouse hearts as well as in the human myocardium (e.g. Ddx3y, Eif2s3y and Jarid1d). Higher expression levels of X-linked genes were detected in female mice for Xist, Timp1 and Car5b and XIST, EIF2S3X and GPM6B in women. Furthermore, genes on autosomal chromosomes encoding cytochromes of the monoxygenase family (e.g. Cyp2b10), carbonic anhydrases (e.g. Car2 and Car3) and natriuretic peptides (e.g. Nppb) were identified with sex- and/or age-specific expression levels. This study underlines the relevance of sex and age as modifiers of cardiac gene expression

    Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity

    Get PDF
    Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection

    HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction

    Get PDF
    Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1

    Economic viability of bacterial leaching-A management research viewpoint

    No full text
    Bacterial leaching as an process to the other chemical leaching techniques in the extractive metallurgy of non-ferrous metals, particularly of copper, zinc and uranium, is under the development stage today. Data obtained by research institutes all over the world indicate a trend for its adoption in many instances because of its simplicity of operation, costs and its suitability in specific conditions. As an additional source of uranium from the earlier discarded dumps in Portugal as an alternative to the chemical leaching and technique for copper in Canada bacterial leaching has shown its value as a process in dealing with low grade ores as well as concentrates
    • …
    corecore