1,065 research outputs found

    Quantum Geometry and Thermal Radiation from Black Holes

    Get PDF
    A quantum mechanical description of black hole states proposed recently within non-perturbative quantum gravity is used to study the emission and absorption spectra of quantum black holes. We assume that the probability distribution of states of the quantum black hole is given by the ``area'' canonical ensemble, in which the horizon area is used instead of energy, and use Fermi's golden rule to find the line intensities. For a non-rotating black hole, we study the absorption and emission of s-waves considering a special set of emission lines. To find the line intensities we use an analogy between a microscopic state of the black hole and a state of the gas of atoms.Comment: 19 pages, 4 figures, modified version to appear in Class. Quant. Gra

    A Lattice Model of Intercalation

    Get PDF
    The thermodynamics of the lattice model of intercalation of ions in crystals is considered in the mean field approximation. Pseudospin formalism is used for the description of interaction of electrons with ions and the possibility of hopping of intercalated ions between different positions is taken into account. Phase diagrams are built. It is shown that the effective interaction between intercalated ions can lead to phase separation or to appearance of modulated phase (it depends on filling of the electron energy band). At high values of the parameter of ion transfer the ionic subsystem can pass to the superfluid-like state

    Single fluxon in double stacked Josephson junctions: Analytic solution

    Full text link
    We derive an approximate analytic solution for a single fluxon in a double stacked Josephson junctions (SJJ's) for arbitrary junction parameters and coupling strengths. It is shown that the fluxon in a double SJJ's can be characterized by two components, with different Swihart velocities and Josephson penetration depths. Using the perturbation theory we find the second order correction to the solution and analyze its accuracy. Comparison with direct numerical simulations shows a quantitative agreement between exact and approximate analytic solutions. It is shown that due to the presence of two components, the fluxon in SJJ's may have an unusual shape with an inverted magnetic field in the second junction when the velocity of the fluxon is approaching the lower Swihart velocity.Comment: 4 pages, 3 figure

    The shape of a moving fluxon in stacked Josephson junctions

    Full text link
    We study numerically and analytically the shape of a single fluxon moving in a double stacked Josephson junctions (SJJ's) for various junction parameters. We show that the fluxon in a double SJJ's consists of two components, which are characterized by different Swihart velocities and Josephson penetration depths. The weight coefficients of the two components depend on the parameters of the junctions and the velocity of the fluxon. It is shown that the fluxon in SJJ's may have an unusual shape with an inverted magnetic field in the second junction when the velocity of the fluxon is approaching the lower Swihart velocity. Finally, we study the influence of fluxon shape on flux-flow current-voltage characteristics and analyze the spectrum of Cherenkov radiation for fluxon velocity above the lower Swihart velocity. Analytic expression for the wavelength of Cherenkov radiation is derived.Comment: 12 pages, 12 figure

    In-plane fluxon in layered superconductors with arbitrary number of layers

    Full text link
    I derive an approximate analytic solution for the in-plane vortex (fluxon) in layered superconductors and stacked Josephson junctions (SJJ's) with arbitrary number of layers. The validity of the solution is verified by numerical simulation. It is shown that in SJJ's with large number of thin layers, phase/current and magnetic field of the fluxon are decoupled from each other. The variation of phase/current is confined within the Josephson penetration depth, λJ\lambda_J, along the layers, while magnetic field decays at the effective London penetration depth, λcλJ\lambda_c \gg \lambda_J. For comparison with real high-TcT_c superconducting samples, large scale numerical simulations with up to 600 SJJ's and with in-plane length up to 4000 λJ\lambda_J%, are presented. It is shown, that the most striking feature of the fluxon is a Josephson core, manifesting itself as a sharp peak in magnetic induction at the fluxon center.Comment: 4 pages, 4 figures. Was presented in part at the First Euroconference on Vortex Matter in Superconductors (Crete, September 1999

    On the Nature of Black Holes in Loop Quantum Gravity

    Full text link
    A genuine notion of black holes can only be obtained in the fundamental framework of quantum gravity resolving the curvature singularities and giving an account of the statistical mechanical, microscopic degrees of freedom able to explain the black hole thermodynamical properties. As for all quantum systems, a quantum realization of black holes requires an operator algebra of the fundamental observables of the theory which is introduced in this study based on aspects of loop quantum gravity. From the eigenvalue spectra of the quantum operators for the black hole area, charge and angular momentum, it is demonstrated that a strict bound on the extensive parameters, different from the relation arising in classical general relativity, holds, implying that the extremal black hole state can neither be measured nor can its existence be proven. This is, as turns out, a result of the specific form of the chosen angular momentum operator and the corresponding eigenvalue spectrum, or rather the quantum measurement process of angular momentum. Quantum mechanical considerations and the lowest, non-zero eigenvalue of the loop quantum gravity black hole mass spectrum indicate, on the one hand, a physical Planck scale cutoff of the Hawking temperature law and, on the other hand, give upper and lower bounds on the numerical value of the Immirzi parameter. This analysis provides an approximative description of the behavior and the nature of quantum black holes

    Superconducting quantum interference phenomenon in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals

    Full text link
    The operational dc-SQUID based on intrinsic Josephson junctions in Bi2_2Sr2_2CaCu2O8+δ_{8+\delta} high-TcT_c superconductor is fabricated and studied. The novel in-plane loop layout and the developed in-situ endpoint detection method allowed an accurate control of the number of junctions in the SQUID. A clear periodic modulation of the superconducting current as a function of magnetic flux through the SQUID loop is observed. This is an unambiguous evidence for the quantum interference phenomenon in Bi2_2Sr2_2CaCu2O8+δ_{8+\delta} single crystals.Comment: 3 pages, 3 figure
    corecore