70 research outputs found

    First Light Measurements of Capella with the Low Energy Transmission Grating Spectrometer aboard the Chandra X-ray Observatory

    Get PDF
    We present the first X-ray spectrum obtained by the Low Energy Transmission Grating Spectrometer (LETGS) aboard the Chandra X-ray Observatory. The spectrum is of Capella and covers a wavelength range of 5-175 A (2.5-0.07 keV). The measured wavelength resolution, which is in good agreement with ground calibration, is Δλ≃\Delta \lambda \simeq 0.06 A (FWHM). Although in-flight calibration of the LETGS is in progress, the high spectral resolution and unique wavelength coverage of the LETGS are well demonstrated by the results from Capella, a coronal source rich in spectral emission lines. While the primary purpose of this letter is to demonstrate the spectroscopic potential of the LETGS, we also briefly present some preliminary astrophysical results. We discuss plasma parameters derived from line ratios in narrow spectral bands, such as the electron density diagnostics of the He-like triplets of carbon, nitrogen, and oxygen, as well as resonance scattering of the strong Fe XVII line at 15.014 A.Comment: 4 pages (ApJ letter LaTeX), 2 PostScript figures, accepted for publication in ApJ Letters, 200

    A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

    Full text link
    The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic

    Fluctuating fire regimes and their historical effects on genetic variation in an endangered shrubland specialist

    Get PDF
    The Pleistocene was characterized by worldwide shifts in community compositions. Some of these shifts were a result of changes in fire regimes, which influenced the distribution of species belonging to fire-dependent communities. We studied an endangered juniper–oak shrubland specialist, the black-capped vireo (Vireo atricapilla). This species was locally extirpated in parts of Texas and Oklahoma by the end of the 1980s as a result of habitat change and loss, predation, brood parasitism, and anthropogenic fire suppression. We sequenced multiple nuclear loci and used coalescence methods to obtain a deeper understanding of historical population trends than that typically available from microsatellites or mtDNA. We compared our estimated population history, a long-term history of the fire regime and ecological niche models representing the mid-Holocene, last glacial maximum, and last interglacial. Our Bayesian skyline plots showed a pattern of historical population fluctuation that was consistent with changing fire regimes. Genetic data suggest that the species is genetically unstructured, and that the current population should be orders of magnitude larger than it is at present. We suggest that fire suppression and habitat loss are primary factors contributing to the recent decline of the BCVI, although the role of climate change since the last glacial maximum is unclear at present

    Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Get PDF
    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino- or cosmic ray- interaction with terrestrial matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and at near-normal incidence, yield generally consistent reflectivity maps across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000 MHz, at elevation angles of 12-30 degrees, finding agreement with the Fresnel equations within systematic errors. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200--600 MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects.Comment: updated to match publication versio
    • …
    corecore