111 research outputs found

    Differential cross sections and polarization observables from CLAS K* photoproduction and the search for new N* states

    Get PDF
    The reaction gamma p -\u3e K*(+)Lambda was measured using the CLAS detector for photon energies between the threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. For the first time, spin-density matrix elements have been extracted for this reaction. Differential cross sections, spin density matrix elements, and the Lambda recoil polarization are compared with theoretical predictions using the BnGa partial wave analysis. The main result is the evidence for significant contributions from N(1895) 1/2(-) and N(2100) 1/2(+) to the reaction. Branching ratios for decays into K*Lambda for these resonances and further resonances are reported. (C) 2017 The Author. Published by Elsevier B.V

    Exclusive eta electroproduction at W \u3e 2 GeV with CLAS and transversity generalized parton distributions

    Get PDF
    The cross section of the exclusive eta electroproduction reaction ep -\u3e e\u27p\u27eta was measured at Jefferson Laboratorywith a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d(4) sigma/dtdQ(2) dx(B)d phi(eta) and structure functions sigma(U) = sigma(T) + epsilon sigma(L), sigma(TT), and sigma(LT), as functions of t, were obtained over a wide range of Q(2) and x(B). The eta structure functions are compared with those previously measured for pi(0) at the same kinematics. At low t, both pi(0) and eta are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The pi(0) and eta data, when taken together, can facilitate the flavor decomposition of the transversity GPDs

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q(2) \u3e 1 GeV2. I. ep -\u3e e pi(+)n

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive pi(+) electroproduction reaction. gamma(*) p -\u3e n pi(+). The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 \u3c W \u3c 3 GeV and 1 \u3c Q(2) \u3c 6 GeV2. Results were obtained for about 6000 bins in W, Q(2), cos(theta(*)), and phi(*). Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W \u3c 1.6 GeV, but very large differences are seen at higher values of W. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q(2), for resonances with masses as high as 2.4 GeV

    Comment on the narrow structure reported by Amaryan et al

    Full text link
    The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.Comment: to be published in Physical Review

    A comparison of forward and backward pp pair knockout in 3He(e,e'pp)n

    Full text link
    Measuring nucleon-nucleon Short Range Correlations (SRC) has been a goal of the nuclear physics community for many years. They are an important part of the nuclear wavefunction, accounting for almost all of the high-momentum strength. They are closely related to the EMC effect. While their overall probability has been measured, measuring their momentum distributions is more difficult. In order to determine the best configuration for studying SRC momentum distributions, we measured the 3^3He(e,eâ€Čpp)n(e,e'pp)n reaction, looking at events with high momentum protons (pp>0.35p_p > 0.35 GeV/c) and a low momentum neutron (pn<0.2p_n< 0.2 GeV/c). We examined two angular configurations: either both protons emitted forward or one proton emitted forward and one backward (with respect to the momentum transfer, q⃗\vec q). The measured relative momentum distribution of the events with one forward and one backward proton was much closer to the calculated initial-state pppp relative momentum distribution, indicating that this is the preferred configuration for measuring SRC.Comment: 8 pages, 9 figures, submitted to Phys Rev C. Version 2 incorporates minor corrections in response to referee comment

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π + electroproduction reaction Îł ∗ p → n π + . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 &lt; W &lt; 3 GeV and 1 &lt; Q 2 &lt; 6 GeV 2 . Results were obtained for about 6000 bins in W ,   Q 2 ,   cos ( Ξ ∗ ) , and ϕ ∗ . Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W &lt; 1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q 2 , for resonances with masses as high as 2.4 GeV

    Rosenbluth Separation of the pi(0) Electroproduction Cross Section

    Get PDF
    We present deeply virtual pi(0) electroproduction cross-section measurements at x(B) = 0.36 and three different Q(2) values ranging from 1.5 to 2 GeV2, obtained from Jefferson Lab Hall A experiment E07-007. The Rosenbluth technique is used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component and, thus, is far from the asymptotic limit predicted by perturbative quantum chromodynamics. Nonetheless, an indication of a nonzero longitudinal contribution is provided by the measured interference term sigma(LT). Results are compared with several models based on the leading-twist approach of generalized parton distributions (GPDs). In particular, a fair agreement is obtained with models in which the scattering amplitude includes convolution terms of chiral-odd (transversity) GPDs of the nucleon with the twist-3 pion distribution amplitude. This experiment, together with previous extensive unseparated measurements, provides strong support to the exciting idea that transversity GPDs can be accessed via neutral pion electroproduction in the high-Q(2) regime

    Induced polarization of {\Lambda}(1116) in kaon electroproduction

    Full text link
    We have measured the induced polarization of the Λ(1116){\Lambda}(1116) in the reaction ep→eâ€ČK+Λep\rightarrow e'K^+{\Lambda}, detecting the scattered eâ€Če' and K+K^+ in the final state along with the proton from the decay Λ→pπ−\Lambda\rightarrow p\pi^-.The present study used the CEBAF Large Acceptance Spectrometer (CLAS), which allowed for a large kinematic acceptance in invariant energy WW (1.6≀W≀2.71.6\leq W \leq 2.7 GeV) and covered the full range of the kaon production angle at an average momentum transfer Q2=1.90Q^2=1.90 GeV2^2.In this experiment a 5.50 GeV electron beam was incident upon an unpolarized liquid-hydrogen target. We have mapped out the WW and kaon production angle dependencies of the induced polarization and found striking differences from photoproduction data over most of the kinematic range studied. However, we also found that the induced polarization is essentially Q2Q^2 independent in our kinematic domain, suggesting that somewhere below the Q2Q^2 covered here there must be a strong Q2Q^2 dependence. Along with previously published photo- and electroproduction cross sections and polarization observables, these data are needed for the development of models, such as effective field theories, and as input to coupled-channel analyses that can provide evidence of previously unobserved ss-channel resonances.Comment: 13 figure

    A glimpse of gluons through deeply virtual compton scattering on the proton

    Get PDF
    The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction

    Rosenbluth Separation of the pi(0) Electroproduction Cross Section Off the Neutron

    Get PDF
    We report the first longitudinal-transverse separation of the deeply virtual exclusive pi(0) electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions d sigma(L)/dt, d sigma(T)/dt, d sigma(LT)/dt, and d sigma(TT)/dt are extracted as a function of the momentum transfer to the recoil system at Q(2) = 1.75 GeV2 and x(B) = 0.36. The ed -\u3e ed pi(0) cross sections are found compatible with the small values expected from theoretical models. The en -\u3e en pi(0) cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of pi(0) electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section
    • 

    corecore