326 research outputs found
Promotion by vanadium compound of the elementary reaction steps in the synthesis gas reaction catalyzed by rhodium
In order to understand the promoting effect of V compd. on Rh catalysts in synthesis gas conversion, changes in reaction rates of elementary steps and the surface concn. of intermediates have been monitored. V promotion enhances the rate of CO dissocn. which is the most important effect. Reactive surface carbon is stabilized by V which results in a slightly decreased reactivity in methane formation. Transient expts. using isotopes and GCMS detection show that CO insertion is not promoted by V. The hydrogenation of ethanal to ethanol is enhanced by V while the desorption rate of ethanal is decrease
Multi-user video streaming using unequal error protection network coding in wireless networks
In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks
Modelling the human epidermis in vitro: tools for basic and applied research
Culture models of tissues and organs are valuable tools developed by basic research that help investigation of the body functions. Modelling is aimed at simplifying experimental procedures in order to better understand biological phenomena, and consequently, when sufficiently characterized, culture models can also be utilized with high potential in applied research. In skin biology and pathology, the development of cultures of keratinocytes as monolayers has allowed the elucidation of most functional and structural characteristics of the cell type. Beside the multiple great successes that have been obtained with this type of culture, this review draws attention on several neglected characteristics of monolayer cultures. The more sophisticated models created in order to reconstruct the fully differentiated epidermis have followed the monolayers. The epidermal reconstruction produces all typical layers found in vivo and thus makes the model much less simple, but only this kind of model allows the study of full differentiation in keratinocyte and production of the cornified barrier. In addition to its interest in basic research, the reconstructed epidermis is currently gaining a lot of interest for applied research, particularly as an alternative to laboratory animals in the chemical and cosmetic industry. Today several commercial providers propose reconstructed skin or epidermis, but in vitro assays on these materials are still under development. In order to be beneficial at long term, the validation of assays must be performed on a material whose availability will not be interrupted. We warn here providers and customers that the longevity of in vitro assays will be guaranteed only if these assays are done with well-described models, prepared according to published procedures, and must consider having a minimum of two independent simultaneous producers of similar material
Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation.
Structure-activity profiles for the phytohormone auxin have been collected for over 70 years, and a number of synthetic auxins are used in agriculture. Auxin classification schemes and binding models followed from understanding auxin structures. However, all of the data came from whole plant bioassays, meaning the output was the integral of many different processes. The discovery of Transport Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as sites of auxin perception and the role of auxin as molecular glue in the assembly of co-receptor complexes has allowed the development of a definitive quantitative structure-activity relationship for TIR1 and AFB5. Factorial analysis of binding activities offered two uncorrelated factors associated with binding efficiency and binding selectivity. The six maximum-likelihood estimators of Efficiency are changes in the overlap matrixes, inferring that Efficiency is related to the volume of the electronic system. Using the subset of compounds that bound strongly, chemometric analyses based on quantum chemical calculations and similarity and self-similarity indices yielded three classes of Specificity that relate to differential binding. Specificity may not be defined by any one specific atom or position and is influenced by coulomb matrixes, suggesting that it is driven by electrostatic forces. These analyses give the first receptor-specific classification of auxins and indicate that AFB5 is the preferred site for a number of auxinic herbicides by allowing interactions with analogues having van der Waals surfaces larger than that of indole-3-acetic acid. The quality factors are also examined in terms of long-standing models for the mechanism of auxin binding
Effects of Pd on Catalysis by Au: CO Adsorption, CO Oxidation, and Cyclohexene Hydrogenation by Supported Au and Pd−Au Catalysts
Incorporating small amounts of Pd into supported Au catalysts has been shown to have beneficial effects on selective hydrogenation reactions, particularly 1,3-butadiene hydrogenation and the hydrogenation of nitroaromatics, especially p-chloronitrobenzene. Appropriate Pd incorporation enhances hydrogenation activity while maintaining the desirable high selectivity of supported Au catalysts. To better understand this phenomenon, a series of alumina- and titania-supported Au and dilute Pd–Au catalysts were prepared via urea deposition–precipitation. The catalysts were studied with infrared spectroscopy of CO adsorption, CO oxidation catalysis, and cyclohexene hydrogenation catalysis with the goal of understanding how Pd affects the catalytic properties of Au. CO adsorption experiments indicated a substantial amount of surface Pd when the catalyst was under CO. Adsorption experiments at various CO pressures were used to determine CO coverage; application of the Temkin adsorbate interaction model allowed for the determination of adsorption enthalpy metrics for CO adsorption on Au. These experiments showed that Pd induces an electronic effect on Au, affecting both the nascent adsorption enthalpy (ΔH0) and the change in enthalpy with increasing coverage. This electronic modification had little effect on CO oxidation catalysis. Michaelis–Menten kinetics parameters showed essentially the same oxygen reactivity on all the catalysts; the primary differences were in the number of active sites. The bimetallic catalysts were poor cyclohexene hydrogenation catalysts, indicating that there is relatively little exposed Pd when the catalyst is under hydrogen. The results, which are discussed in the context of the literature, indicate that a combination of surface composition and Pd-induced electronic effects on Au appear to increase hydrogen chemisorption and hydrogenation activity while largely maintaining the selectivities associated with catalysis by Au
- …