15 research outputs found

    Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6

    Full text link
    The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN ~ 220 K. The magnetic structure is characterized by the propagation vector k=[0,beta,0] with beta ~ 0.14 and the P22_12_11'(0 \beta 0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b-axis. The magnetic moments lie in the ac plane and rotate about pi*(1+beta) ~ 204.8 deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c-axis leads to the cancellation of electric polarization, and results in the lack of ferroelectricity in BiMnFe2O6.Comment: 11 pages, 8 figures, 8 table

    Frustrated couplings between alternating spin-1/2 chains in AgVOAsO4

    Full text link
    We report on the crystal structure and magnetic behavior of the spin-1/2 compound AgVOAsO4. Magnetic susceptibility, high-field magnetization, and electron spin resonance measurements identify AgVOAsO4 as a gapped quantum magnet with a spin gap Delta ~ 13 K and a saturation field H_s ~ 48.5 T. Extensive band structure calculations establish the microscopic magnetic model of spin chains with alternating exchange couplings J ~ 40 K and J' ~ 26 K. However, the precise evaluation of the spin gap emphasizes the role of interchain couplings which are frustrated due to the peculiar crystal structure of the compound. The unusual spin model and the low energy scale of the exchange couplings make AgVOAsO4 a promising candidate for an experimental investigation of Bose-Einstein condensation and other exotic ground states in high magnetic fields.Comment: 10 pages + supplementary information and cif files, 7 figures, 6 table

    Hidden magnetic order in CuNCN

    Full text link
    We report a comprehensive experimental and theoretical study of the quasi-one-dimensional quantum magnet CuNCN. Based on magnetization measurements above room temperature as well as muon spin rotation and electron spin resonance measurements, we unequivocally establish the localized Cu+2-based magnetism and the magnetic transition around 70 K, both controversially discussed in the previous literature. Thermodynamic data conform to the uniform-spin-chain model with a nearest-neighbor intrachain coupling of about 2300 K, in remarkable agreement with the microscopic magnetic model based on density functional theory band-structure calculations. Using exact diagonalization and the coupled-cluster method, we derive a collinear antiferromagnetic order with a strongly reduced ordered moment of about 0.4 mu_B, indicating strong quantum fluctuations inherent to this quasi-one-dimensional spin system. We re-analyze the available neutron-scattering data, and conclude that they are not sufficient to resolve or disprove the magnetic order in CuNCN. By contrast, spectroscopic techniques indeed show signatures of long-range magnetic order below 70 K, yet with a rather broad distribution of internal field probed by implanted muons. We contemplate the possible structural origin of this effect and emphasize peculiar features of the microstructure studied with synchrotron powder x-ray diffraction.Comment: 17 pages, 17 figures, 1 tabl
    corecore