11,137 research outputs found

    Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective

    Full text link
    We present an algorithm for solving systems of linear equations based on the HHL algorithm with a novel qudits methodology, a generalization of the qubits with more states, to reduce the number of gates to be applied and the amount of resources. Based on this idea, we will perform a quantum-inspired version on tensor networks, taking advantage of their ability to perform non-unitary operations such as projection. Finally, we will use this algorithm to obtain a solution for the harmonic oscillator with an external force, the forced damped oscillator and the 2D static heat equation differential equations.Comment: 7 pages, 7 figure

    Graphene Synthesis Using a CVD Reactor and a Discontinuous Feed of Gas Precursor at Atmospheric Pressure

    Get PDF
    The present work shows a new method in order to cost-effectively achieve the synthesis of graphene by Chemical Vapor Deposition (CVD). Unlike most usual processes, where precursors such as argon, H2, CH4, and high purity copper foil are used, the proposed method has replaced the previous ones by N2, N2 (90%) : H2 (10%), C2H2, and electrolytic copper (technical grade) since the use of industrialized precursors helps reduce production costs. On the other hand, the process was modified from a continuous flow system with vacuum to a discontinuous one at atmospheric pressure, eliminating the use of vacuum pump. In addition, this modification optimized the consumption of gases, which reduced the waste and the emission of pollutant gases into the atmosphere. Graphene films were grown under different gas flowrates and temperatures. Then, the obtained material was characterized by TEM, Raman spectroscopy, and AFM, confirming the presence of few graphene layers. In brief, the growth time was reduced to six minutes with acetylene as a carbon precursor at 1000°C and at atmospheric pressure, with a flow rate of 30 sccm. Finally, the reported conditions can be used for the synthesis of good quality graphene films in industrial applications

    One-handed keystroke biometric identification competition

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. V. Monaco, G. Perez, C. C. Tappert, P. Bours, S. Modal, S. Rajkumar, A. Morales, J. Fierrez, and J. Ortega-Garcia, "One-handed Keystroke Biometric Identification Competition", in International Conference on Biometrics, ICB 2015, 58-64This work presents the results of the One-handed Keystroke Biometric Identification Competition (OhKBIC), an official competition of the 8th IAPR International Conference on Biometrics (ICB). A unique keystroke biometric dataset was collected that includes freely-typed long-text samples from 64 subjects. Samples were collected to simulate normal typing behavior and the severe handicap of only being able to type with one hand. Competition participants designed classification models trained on the normally-typed samples in an attempt to classify an unlabeled dataset that consists of normally-typed and one-handed samples. Participants competed against each other to obtain the highest classification accuracies and submitted classification results through an online system similar to Kaggle. The classification results and top performing strategies are described.The authors would like to acknowledge the support from the National Science Foundation under Grant No. 1241585. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the US government

    Comparative dynamics of peritoneal cell immunophenotypes in sheep during the early and late stages of the infection with Fasciola hepatica by flow cytometric analysis

    Get PDF
    Background: The peritoneal cell populations (PCP) are thought to play a crucial role during the early immune response in Fasciola hepatica infection while newly excysted juveniles (NEJ) are migrating in the peritoneal cavity (PC) towards the liver. In this study, we aimed to determine the immunophenotypes of the PCP and to analyse the dynamics of the recruitment of the PCP during the early and late stage of the infection in sheep infected with F. hepatica. Methods: Thirty-seven sheep were divided into three groups: Group 1 (n = 20) and 2 (n = 10) were challenged with F. hepatica, Group 3 (n = 7) was not infected and remained as uninfected control (UC). After the slaughtering, peritoneal lavages were carried out to isolate peritoneal cell populations at 1, 3, 9 and 18 days post-infection (dpi) for Group 1 and at 14 weeks post-infection (wpi) for Group 2 and 3. Flow cytometry was conducted to assess the dynamics of peritoneal cavity cell populations. Results: TCD4 cells showed a significant decrease at 1 and 18 dpi when compared to UC; no statistical differences were detected for TCD8 and WC1+ γδ during the early stage of the infection with respect to the UC. CD14 cells exhibited a decreasing trend, with a significant decrease at 9 and 18 dpi when compared to the UC. The dynamics of MHCII and CD83 cells showed a similar increasing pattern from 3 to 18 dpi. During the chronic stage, both TCD4 and TCD8 cells showed no significant differences when compared to the UC, although a slight but statistically significant higher level of WC1+ γδ cells was observed. A lower percentage of antigen-presenting cells (APCs) was detected with respect to the UC. Conclusions: The recruitment of the lymphocytes subsets did not show a significant increase during the course of the infection and only WC1+ γδ cells displayed a significant increase at the chronic stage. For the CD14, a decreasing trend was observed during the early stage, which was statistically significant at the chronic stage of the infection. Peritoneal CD83 and MHCII cells developed an increasing trend during the early stage of infection, and showed a significant decrease at the late stage of the infection.This study was funded by the European Union Grant H2020-635408- PARAGONE and by National Grant AGL2015-67023-C2-1-R. RPC was supported by an FPU grant of the Spanish Ministry of Education, Culture and Sport. Funding bodies were neither involved in the design of the study nor in analysis and interpretation of the dataVeterinari

    MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology

    Get PDF
    We explore the implications of electroweak baryogenesis for future searches for permanent electric dipole moments in the context of the minimal supersymmetric extension of the Standard Model (MSSM). From a cosmological standpoint, we point out that regions of parameter space that over-produce relic lightest supersymmetric particles can be salvaged only by assuming a dilution of the particle relic density that makes it compatible with the dark matter density: this dilution must occur after dark matter freeze-out, which ordinarily takes place after electroweak baryogenesis, implying the same degree of dilution for the generated baryon number density as well. We expand on previous studies on the viable MSSM regions for baryogenesis, exploring for the first time an orthogonal slice of the relevant parameter space, namely the (tan\beta, m_A) plane, and the case of non-universal relative gaugino-higgsino CP violating phases. The main result of our study is that in all cases lower limits on the size of the electric dipole moments exist, and are typically on the same order, or above, the expected sensitivity of the next generation of experimental searches, implying that MSSM electroweak baryogenesis will be soon conclusively tested.Comment: 23 pages, 10 figures, matches version published in JHE
    corecore