829 research outputs found
Linear Maximum Margin Classifier for Learning from Uncertain Data
In this paper, we propose a maximum margin classifier that deals with
uncertainty in data input. More specifically, we reformulate the SVM framework
such that each training example can be modeled by a multi-dimensional Gaussian
distribution described by its mean vector and its covariance matrix -- the
latter modeling the uncertainty. We address the classification problem and
define a cost function that is the expected value of the classical SVM cost
when data samples are drawn from the multi-dimensional Gaussian distributions
that form the set of the training examples. Our formulation approximates the
classical SVM formulation when the training examples are isotropic Gaussians
with variance tending to zero. We arrive at a convex optimization problem,
which we solve efficiently in the primal form using a stochastic gradient
descent approach. The resulting classifier, which we name SVM with Gaussian
Sample Uncertainty (SVM-GSU), is tested on synthetic data and five publicly
available and popular datasets; namely, the MNIST, WDBC, DEAP, TV News Channel
Commercial Detection, and TRECVID MED datasets. Experimental results verify the
effectiveness of the proposed method.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence. (c)
2017 IEEE. DOI: 10.1109/TPAMI.2017.2772235 Author's accepted version. The
final publication is available at
http://ieeexplore.ieee.org/document/8103808
Bioactive Ingredients from Microalgae: Food and Feed Applications
Microalgae (green or blue-green ones) are among the most important organisms on the world, with a versatile and adaptive metabolism. They are able to synthesize bioactive molecules (mainly secondary metabolites such as unsaturated fatty acids, pigments, amino acids) with biomedical applications, enhancement of the nutritional value of food, animal feed/aquaculture, as well with impact on the environmental protection ( as raw materials for biofuels). Last decade, by a targeted selection of wild microalgae strains, their cultivation in farms developed in parallel with the bioreactors’products. There are nowadays cultivated at industrial scale especially Dunaliella salina p., Spirulina platensis, Hematococcus pluvialis or Chlorella vulgaris as valuable resources of polyunsaturated lipids and sterols, proteins, polysaccharides, carotenoid pigments, vitamins, minerals with antioxidant, antibacterial or antiviral effects. This review presents a systematic approach on the recent literature data collected the last years, underlying their morphologic and biochemical potential, the advanced technologies to use the bioactive components of different microalgae, new formulations which incorporate, stabilize and store their bioactivity and increase the bioavailability of their components in food and feed. Although their morphologic and biochemical potential is well described, there are presented new data on their bioactive components and formulations using emerging technologies for new application approaches which aims their use as ingredients in added value products for food, cosmetics and feed industry, to be exploited for commercial use. This review updated the last findings in these areas, underlined the reason for the scientific and technological advances, due to their huge potential, not only in environment, energy, but more and more as ingredients for food and feed/ aquaculture products, in the future
Exponential Renormalization II: Bogoliubov's R-operation and momentum subtraction schemes
This article aims at advancing the recently introduced exponential method for
renormalisation in perturbative quantum field theory. It is shown that this new
procedure provides a meaningful recursive scheme in the context of the
algebraic and group theoretical approach to renormalisation. In particular, we
describe in detail a Hopf algebraic formulation of Bogoliubov's classical
R-operation and counterterm recursion in the context of momentum subtraction
schemes. This approach allows us to propose an algebraic classification of
different subtraction schemes. Our results shed light on the peculiar algebraic
role played by the degrees of Taylor jet expansions, especially the notion of
minimal subtraction and oversubtractions.Comment: revised versio
DiffusionAct: Controllable Diffusion Autoencoder for One-shot Face Reenactment.
Video-driven neural face reenactment aims to synthesize realistic facial images that successfully preserve the identity and appearance of a source face, while transferring the target head pose and facial expressions. Existing GAN-based methods suffer from either distortions and visual artifacts or poor reconstruction quality, i.e., the background and several important appearance details, such as hair style/color, glasses and accessories, are not faithfully reconstructed. Recent advances in Diffusion Probabilistic Models (DPMs) enable the generation of high-quality realistic images. To this end, in this paper we present DiffusionAct, a novel method that leverages the photo-realistic image generation of diffusion models to perform neural face reenactment. Specifically, we propose to control the semantic space of a Diffusion Autoencoder (DiffAE), in order to edit the facial pose of the input images, defined as the head pose orientation and the facial expressions. Our method allows one-shot, self, and cross-subject reenactment, without requiring subject-specific fine-tuning. We compare against state-of-the-art GAN-, StyleGAN2-, and diffusion-based methods, showing better or on-par reenactment performance
Recommended from our members
A deep generic to specific recognition model for group membership analysis using non-verbal cues
Automatic understanding and analysis of groups has attracted increasing attention
in the vision and multimedia communities in recent years. However,
little attention has been paid to the automatic analysis of the non-verbal behaviors
and how this can be utilized for analysis of group membership, i.e.,
recognizing which group each individual is part of. This paper presents a
novel Support Vector Machine (SVM) based Deep Specific Recognition Model
(DeepSRM) that is learned based on a generic recognition model. The generic
recognition model refers to the model trained with data across different conditions,
i.e., when people are watching movies of different types. Although the
generic recognition model can provide a baseline for the recognition model
trained for each specific condition, the different behaviors people exhibit in
different conditions limit the recognition performance of the generic model.
Therefore, the specific recognition model is proposed for each condition separately
and built on the top of the generic recognition model. We conduct a set
of experiments using a database collected to study group analysis while each
group (i.e., four participants together) were watching a number of long movie
segments. The proposed deep specific recognition model (44%) outperforms the generic recognition model (26%). The recognition of group membership also indicates that the non-verbal behaviors of individuals within a group share commonalities
Video Summarization Using Deep Neural Networks: A Survey
Video summarization technologies aim to create a concise and complete
synopsis by selecting the most informative parts of the video content. Several
approaches have been developed over the last couple of decades and the current
state of the art is represented by methods that rely on modern deep neural
network architectures. This work focuses on the recent advances in the area and
provides a comprehensive survey of the existing deep-learning-based methods for
generic video summarization. After presenting the motivation behind the
development of technologies for video summarization, we formulate the video
summarization task and discuss the main characteristics of a typical
deep-learning-based analysis pipeline. Then, we suggest a taxonomy of the
existing algorithms and provide a systematic review of the relevant literature
that shows the evolution of the deep-learning-based video summarization
technologies and leads to suggestions for future developments. We then report
on protocols for the objective evaluation of video summarization algorithms and
we compare the performance of several deep-learning-based approaches. Based on
the outcomes of these comparisons, as well as some documented considerations
about the suitability of evaluation protocols, we indicate potential future
research directions.Comment: Journal paper; Under revie
AC-SUM-GAN: Connecting Actor-Critic and Generative Adversarial Networks for Unsupervised Video Summarization
This paper presents a new method for unsupervised video summarization. The proposed architecture embeds an Actor-Critic model into a Generative Adversarial Network and formulates the selection of important video fragments (that will be used to form the summary) as a sequence generation task. The Actor and the Critic take part in a game that incrementally leads to the selection of the video key-fragments, and their choices at each step of the game result in a set of rewards from the Discriminator. The designed training workflow allows the Actor and Critic to discover a space of actions and automatically learn a policy for key-fragment selection. Moreover, the introduced criterion for choosing the best model after the training ends, enables the automatic selection of proper values for parameters of the training process that are not learned from the data (such as the regularization factor σ). Experimental evaluation on two benchmark datasets (SumMe and TVSum) demonstrates that the proposed AC-SUM-GAN model performs consistently well and gives SoA results in comparison to unsupervised methods, that are also competitive with respect to supervised methods
VideoAnalysis4ALL: An On-line Tool for the Automatic Fragmentation and Concept-based Annotation, and the Interactive Exploration of Videos.
This paper presents the VideoAnalysis4ALL tool that supports the automatic fragmentation and concept-based annotation of videos, and the exploration of the annotated video fragments through an interactive user interface. The developed web application decomposes the video into two different granularities, namely shots and scenes, and annotates each fragment by evaluating the existence of a number (several hundreds) of high-level visual concepts in the keyframes extracted from these fragments. Through the analysis the tool enables the identification and labeling of semantically coherent video fragments, while its user interfaces allow the discovery of these fragments with the help of human-interpretable concepts. The integrated state-of-the-art video analysis technologies perform very well and, by exploiting the processing capabilities of multi-thread / multi-core architectures, reduce the time required for analysis to approximately one third of the video’s duration, thus making the analysis three times faster than real-time processing
A Stepwise, Label-based Approach for Improving the Adversarial Training in Unsupervised Video Summarization
In this paper we present our work on improving the efficiency of adversarial training for unsupervised video summarization. Our starting point is the SUM-GAN model, which creates a representative summary based on the intuition that such a summary should make it possible to reconstruct a video that is indistinguishable from the original one. We build on a publicly available implementation of a variation of this model, that includes a linear compression layer to reduce the number of learned parameters and applies an incremental approach for training the different components of the architecture. After assessing the impact of these changes to the model’s performance, we propose a stepwise, label-based learning process to improve the training efficiency of the adversarial part of the model. Before evaluating our model’s efficiency, we perform a thorough study with respect to the used evaluation protocols and we examine the possible performance on two benchmarking datasets, namely SumMe and TVSum. Experimental evaluations and comparisons with the state of the art highlight the competitiveness of the proposed method. An ablation study indicates the benefit of each applied change on the model’s performance, and points out the advantageous role of the introduced stepwise, label-based training strategy on the learning efficiency of the adversarial part of the architecture
HyperReenact: one-shot reenactment via jointly learning to refine and retarget faces
In this paper, we present our method for neural face
reenactment, called HyperReenact, that aims to generate
realistic talking head images of a source identity, driven
by a target facial pose. Existing state-of-the-art face reenactment methods train controllable generative models that
learn to synthesize realistic facial images, yet producing
reenacted faces that are prone to significant visual artifacts,
especially under the challenging condition of extreme head
pose changes, or requiring expensive few-shot fine-tuning
to better preserve the source identity characteristics. We
propose to address these limitations by leveraging the photorealistic generation ability and the disentangled properties of a pretrained StyleGAN2 generator, by first inverting
the real images into its latent space and then using a hypernetwork to perform: (i) refinement of the source identity characteristics and (ii) facial pose re-targeting, eliminating this way the dependence on external editing methods that typically produce artifacts. Our method operates under the one-shot setting (i.e., using a single source
frame) and allows for cross-subject reenactment, without
requiring any subject-specific fine-tuning. We compare
our method both quantitatively and qualitatively against
several state-of-the-art techniques on the standard benchmarks of VoxCeleb1 and VoxCeleb2, demonstrating the superiority of our approach in producing artifact-free images, exhibiting remarkable robustness even under extreme
head pose changes. We make the code and the pretrained
models publicly available at: https://github.com/
StelaBou/HyperReenact
- …