352 research outputs found

    Cool spots on the surface of the active giant PZ Mon

    Full text link
    Based on the multiband (BVRIJHKL) photometric observations of the active red giant PZ Mon performed for the first time in the winter season of 2017-2018, we have determined the main characteristics of the spotted stellar surface in a parametric three-spot model. The unspotted surface temperature is Teff=4730 K, the temperature of the cool spots is Tspot=3500 K, their relative area is about 41%, and the temperature of the warm spots is Twarm=4500 K with a maximum relative area up to 20%. The distribution of spots over the stellar surface has been modeled. The warm spots have been found to be distributed at various longitudes in the hemisphere on the side of the secondary component and are most likely a result of its influence.Comment: 5 pages, 7 figure

    Negative Magnetoresistance in the Nearest-neighbor Hopping Conduction

    Full text link
    We propose a size effect which leads to the negative magnetoresistance in granular metal-insulator materials in which the hopping between two nearest neighbor clusters is the main transport mechanism. We show that the hopping probability increases with magnetic field. This is originated from the level crossing in a few-electron cluster. Thus, the overlap of electronic states of two neighboring clusters increases, and the negative magnetoresistance is resulted.Comment: Latex file, no figur

    1D non-LTE corrections for chemical abundance analyses of very metal-poor stars

    Full text link
    Detailed chemical abundances of very metal-poor (VMP, [Fe/H] < -2) stars are important for better understanding the First Stars, early star formation and chemical enrichment of galaxies. Big on-going and coming high-resolution spectroscopic surveys provide a wealth of material that needs to be carefully analysed. For VMP stars, their elemental abundances should be derived based on the non-local thermodynamic equilibrium (non-LTE = NLTE) line formation because low metal abundances and low electron number density in the atmosphere produce the physical conditions favorable for the departures from LTE. The galactic archaeology research requires homogeneous determinations of chemical abundances. For this purpose, we present grids of the 1D-NLTE abundance corrections for the Na I, Mg I, Ca I, Ca II, Ti II, Fe I, Zn I, Zn II, Sr II, and Ba II lines, which are used in the galactic archaeology research. The range of atmospheric parameters represents VMP stars on various evolutionary stages and covers effective temperatures from 4000 to 6500~K, surface gravities from log g = 0.5 to log g = 5.0, and metallicities 5.0-5.0 \le [Fe/H] 2.0\le -2.0. The data is publicly available, and we provide the tools for interpolating in the grids online.Comment: 11 pages, 10 figures, 3 tables, revised version after the referee's positive report, MNRA

    Temporal dynamic of the phylogenetic diversity of the bird community of agricultural lands in Ukrainian steppe drylands

    Get PDF
    This study discussed the importance of the phylogenetic components in the structure of bird communities of anthropogenically transformed ecosystems. The investigation was conducted in the landscapes of the south and south-east of Ukraine in the nesting seasons 1988–2018. The bird community in the agricultural landscape was found to be presented by 10 species. The number of species was closely correlated with its phylogenetic analogue – Faith’s index. Both indices were stationary over time, as they do not show a statistically significant time trend. The two axes were extracted as a result of the DPCOA procedure and the permutation test showed their statistical significance. The axis 1 was the most sensitive to the opposite dynamics of the abundance of Coturnix coturnix and Burhinus oedicnemus on the one hand and Alauda arvensis and Melanocorypha calandra on the other. The axis 2 is the most sensitive to the opposite dynamics of Corvus monedula and Melanocorypha calandra on the one hand and Coturnix coturnix and Motacilla flava on the other. Based on phylogenetic diversity, the years can be clustered with the extraction of four relatively homogeneous phylogenetic structures of bird communities. The indicator of the initial period of dynamics (1988–1992) was Burhinus oedicnemus. Sowing or mechanical weeding may be considered as a major factor of nest destruction of Burhinus oedicnemus. The decreasing of the abundance of the trophic recourses because of agricultural activity may have caused the monotonous negative trend over time of the Burhinus oedicnemus populations. The period 1993–2003 was a transitional one, for which there were no clear indicators, as a characteristic feature of this period was the processes of bird community restructuring. The period 2004–2013 was characterized by the loss of Burhinus oedicnemus from the community and a sharp increase in the abundance of Corvus monedula. These species are distinguished by their phylogenetic specificity and are located on the periphery relative to the phylogenetic core of the community. There was growing importance in the community of such species as Alauda arvensis, Anthus campestris, and Melanocorypha calandra between 2014 and 2018. Our results also confirm the assumption that phylogenetic overdispersion is an important requirement for the stability of the bird community in anthropogenically transformed landscapes

    Repolarization of ferroelectric superlattices BaZrO3/BaTiO3

    Full text link
    The study was supported by Russian Science Foundation, project No. № 17-72-20105

    An observation of Lagenorhynchus albirostris (Delphinidae, Odontoceti) in Kola Peninsula, Barents Sea in 2011

    Get PDF
    Lagenorhynchus albirostris is one of the most common Cetacean species in the Barents Sea. However, there is not a mention of its appearance in the Kola Bay. The present report confirms the appearance of a group of Lagenorhynchus albirostris in the Kola Bay near the aquacomplex of the Murmansk Marine Biological Institute of the Kola Research Centre of RAS, Polyarny town, in autumn 2011

    Quantum Size Effect transition in percolating nanocomposite films

    Full text link
    We report on unique electronic properties in Fe-SiO2 nanocomposite thin films in the vicinity of the percolation threshold. The electronic transport is dominated by quantum corrections to the metallic conduction of the Infinite Cluster (IC). At low temperature, mesoscopic effects revealed on the conductivity, Hall effect experiments and low frequency electrical noise (random telegraph noise and 1/f noise) strongly support the existence of a temperature-induced Quantum Size Effect (QSE) transition in the metallic conduction path. Below a critical temperature related to the geometrical constriction sizes of the IC, the electronic conductivity is mainly governed by active tunnel conductance across barriers in the metallic network. The high 1/f noise level and the random telegraph noise are consistently explained by random potential modulation of the barriers transmittance due to local Coulomb charges. Our results provide evidence that a lowering of the temperature is somehow equivalent to a decrease of the metal fraction in the vicinity of the percolation limit.Comment: 21 pages, 8 figure

    Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere - Part 1: Basic concepts of the measurement technique

    Get PDF
    We retrieved the total content of the atmospheric water vapor (or Integrated Water Vapor, IWV) from extensive sets of photometric data obtained since 1995 at Lindenberg Meteorological Observatory with star and sun photometers. Different methods of determination of the empirical parameters that are necessary for the retrieval are discussed. The instruments were independently calibrated using laboratory measurements made at Pulkovo Observatory with the VKM-100 multi-pass vacuum cell. The empirical parameters were also calculated by the simulation of the atmospheric absorption by water vapor, using the MODRAN-4 program package for different model atmospheres. The results are compared to those presented in the literature, obtained with different instruments and methods of the retrieval. The reliability of the empirical parameters, used for the power approximation that links the water vapor content with the observed absorption, is analyzed. Currently, the total (from measurements, calibration, and calculations) errors yield the standard uncertainty of about 10% in the total column water vapor. We discuss the possibilities for improving the accuracy of calibration to ~1% as indispensable condition in order to make it possible to use data obtained by optical photometry as an independent reference for other methods (GPS, MW-radiometers, lidar, etc).Comment: 28 pages, 8 figures, 3 tables. In submitting to Atmospheric Measurement Technique
    corecore