139 research outputs found

    High-frequency dielectric anomalies in a highly frustrated square kagome lattice nabokoite family compounds ACu7_7(TeO4_4)(SO4_4)5_5Cl (A=Na, K, Rb, Cs)

    Full text link
    Nabokoite family compounds ACu7_7(TeO4_4)(SO4_4)5_5Cl (A=Na, K, Cs, Rb) are candidates for the experimental realization of highly-frustrated 2D square kagome lattice (SKL). Their magnetic subsystem includes SKL layers decorated by additional copper ions. All members of this family are characterized by quite high Curie-Weiss temperatures (80200\sim 80-200 K), but magnetic ordering was reported only for Na and K compounds at a much lower temperatures below 4 K. We report here results of the study of high-frequency (10\sim 10 GHz) dielectric properties of this family of compounds. Our study revealed presence of the strong dielectric anomaly both in the real and imaginary parts of high-frequency dielectric permittivity for Na and K compounds approx. 100 and 26 K, correspondingly, presumably related to antiferroelectric ordering. Additionally, much weaker anomalies were observed at approximately 5K indicating possible interplay of magnetic and lattice degrees of freedom. We discuss possible relation between the structure rearrangements accompanying dielectric anomalies and a delayed magnetic ordering in the nabokoite family compounds.Comment: 12 pages, 8 figure

    Paramagnetic and antiferromagnetic resonances in the diamagnetically diluted Haldane magnet PbNi2V2O8

    Full text link
    The impurity-induced antiferromagnetic ordering of the doped Haldane magnet Pb(Ni{1-x}Mg{x})2V2O8 (0 < x <0.06) was studied by electron spin resonance (ESR) on ceramic samples in the frequency range 9-110 GHz. Below the N\'{e}el temperature a transformation of the ESR spectrum was found, indicating an antiferromagnetic resonance mode of spin precession. The excitation gap of the spin-wave spectrum increases with increasing Mg-concentration xx in the same manner as the N\'{e}el temperature, reaching its maximum value of 80 GHz at x > 0.04. At small concentrations x < 0.02 the signals of antiferromagnetic resonance were found to coexist with the signal of the paramagnetic resonance indicating a microscopic separation of the magnetic phases.Comment: 10 pages, 9 figure

    ESR study of the single-ion anisotropy in the pyrochlore antiferromagnet Gd2Sn2O7

    Full text link
    Single-ion anisotropy is of importance for the magnetic ordering of the frustrated pyrochlore antiferromagnets Gd2Ti2O7 and Gd2Sn2O7. The anisotropy parameters for the Gd2Sn2O7 were measured using the electron spin resonance (ESR) technique. The anisotropy was found to be of the easy plane type, with the main constant D=140mK. This value is 35% smaller than the value of the corresponding anisotropy constant in the related compound Gd2Ti2O7.Comment: 8 pages, 3 figure

    Spin-resonance modes of the spin-gap magnet TlCuCl_3

    Full text link
    Three kinds of magnetic resonance signals were detected in crystals of the spin-gap magnet TlCuCl_3. First, we have observed the microwave absorption due to the excitation of the transitions between the singlet ground state and the excited triplet states. This mode has the linear frequency-field dependence corresponding to the previously known value of the zero-field spin-gap of 156 GHz and to the closing of spin-gap at the magnetic field H_c of about 50 kOe. Second, the thermally activated resonance absorption due to the transitions between the spin sublevels of the triplet excitations was found. These sublevels are split by the crystal field and external magnetic field. Finally, we have observed antiferromagnetic resonance absorption in the field-induced antiferromagnetic phase above the critical field H_c. This resonance frequency is strongly anisotropic with respect to the direction of the magnetic field.Comment: v.2: typo correction (one of the field directions was misprinted in the v.1

    Separation of the magnetic phases at the N\'{e}el point in the diluted spin-Peierls magnet CuGeO3

    Full text link
    The impurity induced antiferromagnetic ordering of the doped spin-Peierls magnet Cu(1-x)Mg(x)GeO(3) was studied by ESR technique. Crystals with the Mg concentration x<4% demonstrate a coexistence of paramagnetic and antiferromagnetic ESR modes. This coexistence indicates the separation of a macroscopically uniform sample in the paramagnetic and antiferromagnetic phases. In the presence of the long-range spin-Peierls order (in a sample with x=1.71%) the volume of the antiferromagnetic phase immediately below the N\'{e}el point T_N is much smaller than the volume of the paramagnetic phase. In the presence of the short-range spin-Peierls order (in samples with x=2.88%, x= 3.2%) there are comparable volumes of paramagnetic and antiferromagnetic phases at T=T_N. The fraction of the antiferromagnetic phase increases with lowering temperature. In the absence of the spin-Peierls dimerization (at x=4.57%)the whole sample exhibits the transition into the antiferromagnetic state and there is no phase separation. The phase separation is explained by the consideration of clusters of staggered magnetization located near impurity atoms. In this model the areas occupied by coherently correlated spins expand with decreasing temperature and the percolation of the ordered area through a macroscopic distance occurs.Comment: 7pages, 10 figure

    Magnetic order and spin fluctuations in the spin liquid Tb2_2Sn2_2O7_7.

    Get PDF
    We have studied the spin liquid Tb2_2Sn2_2O7_7 by neutron diffraction and specific heat measurements. Below about 2 K, the magnetic correlations change from antiferromagnetic to ferromagnetic. Magnetic order settles in two steps, with a smeared transition at 1.3(1) K then an abrupt transition at 0.87(2) K. A new magnetic structure is observed, not predicted by current models, with both ferromagnetic and antiferromagnetic character. It suggests that the spin liquid degeneracy is lifted by dipolar interactions combined with a finite anisotropy along axes. In the ground state, the Tb3+^{3+} ordered moment is reduced with respect to the free ion moment (9 μB\mu_{\rm B}). The moment value of 3.3(3) μB\mu_{\rm B} deduced from the specific heat is much smaller than derived from neutron diffraction of 5.9(1) μB\mu_{\rm B}. This difference is interpreted by the persistence of slow collective magnetic fluctuations down to the lowest temperatures

    Static and resonant properties of decorated square kagome lattice compound KCu7_7(TeO4_4)(SO4_4)5_5Cl

    Full text link
    The magnetic subsystem of nabokoite, KCu7_7(TeO4_4)(SO4_4)5_5Cl, is constituted by buckled square kagome lattice of copper decorated by quasi-isolated Cu2+^{2+} ions. This combination determines peculiar physical properties of this compound evidenced in electron spin resonance (ESR) spectroscopy, dielectric permittivity ε\varepsilon, magnetization MM and specific heat CpC_p measurements. At lowering temperature, the magnetic susceptibility χ=M/H\chi = M/H passes through broad hump at about 150 K inherent for low-dimensional magnetic systems and evidences sharp peak at antiferromagnetic phase transition at TN=3.2T_N = 3.2 K. The Cp(T)C_p(T) curve also exhibits sharp peak at TNT_N readily suppressed by magnetic field and additional peak-like anomaly at Tpeak=5.7T_\textrm{peak}= 5.7 K robust to magnetic field. The latter can be ascribed to low-lying singlet excitations filling the singlet-triplet gap in magnetic excitation spectrum of the square kagome lattice [J.Richter, O.Derzhko and J.Schnack, Phys. Rev. B 105, 144427 (2022)]. According to position of TpeakT_\textrm{peak}, the leading exchange interaction parameter JJ in nabokoite is estimated to be about 60K. ESR spectroscopy provides indications that antiferromagnetic structure below TNT_N is non-collinear. These complex thermodynamic and resonant properties signal the presence of two weakly coupled magnetic subsystems in nabokoite, namely spin-liquid with large singlet-triplet gap and antiferromagnet represented by decorating ions. Separate issue is the observation of antiferroelectric-type behavior in ε\varepsilon at low temperatures, which tentatively reduces the symmetry and partially lifts frustration of magnetic interactions of decorating copper ions with buckled square kagome lattice.Comment: 13 pages, 13 figure

    CRYSTAL STRUCTURE AND MAGNETIC TRANSITION IN La1−xTbxMn2Si2 COMPOUNDS

    Full text link
    This work was supported by MES of RF (contract № FEUZ-2023-0020)

    THE EFFECT OF Tb AND Mn ON THE INTERCHANGE INTERACTION FOR La0.2Tb0.8Mn2Si2 AND La0.4Tb0.6Mn2Si2

    Full text link
    Based on magnetic phase diagram of the La1-xTbxMn2Si2 system obtained from magnetization measurements, we have chosen the La0.2Tb0.8Mn2Si2 and La0.4Tb0.6Mn2Si2 samples for neutron diffraction.This work was supported by MES of RF (contract No. FEUZ-2020-0050)
    corecore