101 research outputs found
Observational constraints on low redshift evolution of dark energy: How consistent are different observations?
The dark energy component of the universe is often interpreted either in
terms of a cosmological constant or as a scalar field. A generic feature of the
scalar field models is that the equation of state parameter w= P/rho for the
dark energy need not satisfy w=-1 and, in general, it can be a function of
time. Using the Markov chain Monte Carlo method we perform a critical analysis
of the cosmological parameter space, allowing for a varying w. We use
constraints on w(z) from the observations of high redshift supernovae (SN), the
WMAP observations of CMB anisotropies and abundance of rich clusters of
galaxies. For models with a constant w, the LCDM model is allowed with a
probability of about 6% by the SN observations while it is allowed with a
probability of 98.9% by WMAP observations. The LCDM model is allowed even
within the context of models with variable w: WMAP observations allow it with a
probability of 99.1% whereas SN data allows it with 23% probability. The SN
data, on its own, favors phantom like equation of state (w<-1) and high values
for Omega_NR. It does not distinguish between constant w (with w<-1) models and
those with varying w(z) in a statistically significant manner. The SN data
allows a very wide range for variation of dark energy density, e.g., a
variation by factor ten in the dark energy density between z=0 and z=1 is
allowed at 95% confidence level. WMAP observations provide a better constraint
and the corresponding allowed variation is less than a factor of three.
Allowing for variation in w has an impact on the values for other cosmological
parameters in that the allowed range often becomes larger. (Abridged)Comment: 21 pages, PRD format (Revtex 4), postscript figures. minor
corrections to improve clarity; references, acknowledgement adde
Free Radical Scavenging Activity: Antiproliferative and Proteomics Analyses of the Differential Expression of Apoptotic Proteins in MCF-7 Cells Treated with Acetone Leaf Extract of Diospyros lycioides
Breast cancer is the most common cancer in South Africa. The acetone leaf extract of Diospyros lycioides was evaluated qualitatively and quantitatively for its antioxidant potential using DPPH assay and nitric oxide radical scavenging effect, while the viability of MCF-7 cells was evaluated using the MTT. MCF-7 treated cells were stained with Hoechst 335258 dye and annexin-V-FITC to be evaluated for apoptotic effect of the extract, while mRNA expression levels of apoptotic genes were assessed by quantitative real-time PCR and deferential protein expression levels using 2D gel electrophoresis and mass spectrometry. Results revealed presence of antioxidant constituents in the extract. Extract was shown to be cytotoxic in a concentration- and time-dependent manner. Cytotoxicity was demonstrated to be due to apoptosis, with 70% of the extract-treated cells being annexin-V-positive/PI negative at 48 hours. The extract was also shown to upregulate the expression of p53 gene with concomitant downregulation of the Bcl-2 antiapoptotic gene while differentially expressed proteins were identified as enolase, pyruvate kinase, and glyceraldehyde-3-phosphate. The extract in this study was shown to induce apoptosis at an early stage which makes it an ideal source that can be explored for compounds that may be used in the treatment and management of cancer
Cosmology in a String-Dominated Universe
The string-dominated universe locally resembles an open universe, and fits
dynamical measures of power spectra, cluster abundances, redshift distortions,
lensing constraints, luminosity and angular diameter distance relations and
microwave background observations. We show examples of networks which might
give rise to recent string-domination without requiring any fine-tuned
parameters. We discuss how future observations can distinguish this model from
other cosmologies.Comment: 17 pages including 4 figures, of which one is in colo
TreePM Method for Two-Dimensional Cosmological Simulations
We describe the two-dimensional TreePM method in this paper. The 2d TreePM
code is an accurate and efficient technique to carry out large two-dimensional
N-body simulations in cosmology. This hybrid code combines the 2d Barnes and
Hut Tree method and the 2d Particle-Mesh method. We describe the splitting of
force between the PM and the Tree parts. We also estimate error in force for a
realistic configuration. Finally, we discuss some tests of the code.Comment: 12 pages, 3 figures, uses jaa.sty. To be submitted to JA
Effects of the size of cosmological N-body simulations on physical quantities II-. Halo formation and destruction rate
In this study we show how errors due to finite box size affect formation and
destruction rate for haloes in cosmological N-body simulations. In an earlier
study we gave an analytic prescription of finding the corrections in the mass
function. Following the same approach, in this paper we give analytical
expressions for corrections in the formation rate, destruction rate and the
rate of change in comoving number density, and compute their expected values
for the power law () and LCDM models.Comment: 16 pages, 5 figures, Some corrections are made and new references
adde
SO(1,1) dark energy model and the universe transition
We suggest a scalar model of dark energy with the SO(1,1) symmetry. The model
may be reformulated in terms of a real scalar field and the scale factor
so that the Lagrangian may be decomposed as that of the real quintessence
model plus the negative coupling energy term of to . The existence of
the coupling term leads to a wider range of and overcomes the
problem of negative kinetic energy in the phantom universe model. We propose a
power-law expansion model of univese with time-dependent power, which can
describe the phantom universe and the universe transition from ordinary
acceleration to super acceleration.Comment: 12 pages. submitted to CQ
Constraints on alternative models to dark energy
The recent observations of type Ia supernovae strongly support that the
universe is accelerating now and decelerated in the recent past. This may be
the evidence of the breakdown of the standard Friemann equation. We consider a
general modified Friedmann equation. Three different models are analyzed in
detail. The current supernovae data and the Wilkinson microwave anisotropy
probe data are used to constrain these models. A detailed analysis of the
transition from the deceleration phase to the acceleration phase is also
performed.Comment: 10 pages, 1 figure, revtex
Scalar-Tensor Models of Normal and Phantom Dark Energy
We consider the viability of dark energy (DE) models in the framework of the
scalar-tensor theory of gravity, including the possibility to have a phantom DE
at small redshifts as admitted by supernova luminosity-distance data. For
small , the generic solution for these models is constructed in the form of
a power series in without any approximation. Necessary constraints for DE
to be phantom today and to cross the phantom divide line at small
are presented. Considering the Solar System constraints, we find for the
post-Newtonian parameters that and for
the model to be viable, and (but very close to 1) if the model
has a significantly phantom DE today. However, prospects to establish the
phantom behaviour of DE are much better with cosmological data than with Solar
System experiments. Earlier obtained results for a -dominated universe
with the vanishing scalar field potential are extended to a more general DE
equation of state confirming that the cosmological evolution of these models
rule them out. Models of currently fantom DE which are viable for small can
be easily constructed with a constant potential; however, they generically
become singular at some higher . With a growing potential, viable models
exist up to an arbitrary high redshift.Comment: 30 pages, 4 figures; Matches the published version containing an
expanded discussion of various point
Observational Manifestations of the First Protogalaxies in the 21 cm Line
The absorption properties of the first low-mass protogalaxies (mini-halos)
forming at high redshifts in the 21-cm line of atomic hydrogen are considered.
The absorption properties of these protogalaxies are shown to depend strongly
on both their mass and evolutionary status. The optical depths in the line
reach 0.1-0.2 for small impact parameters of the line of sight. When a
protogalaxy being compressed, the influence of gas accretion can be seen
manifested in a non-monotonic frequency dependence of the optical depth. The
absorption characteristics in the 21-cm line are determined by the thermal and
dynamical evolution of the gas in protogalaxies. Since the theoretical line
width in the observer's reference frame is 1-6 kHz and the expected separation
between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved
using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure
Simulation techniques for cosmological simulations
Modern cosmological observations allow us to study in great detail the
evolution and history of the large scale structure hierarchy. The fundamental
problem of accurate constraints on the cosmological parameters, within a given
cosmological model, requires precise modelling of the observed structure. In
this paper we briefly review the current most effective techniques of large
scale structure simulations, emphasising both their advantages and
shortcomings. Starting with basics of the direct N-body simulations appropriate
to modelling cold dark matter evolution, we then discuss the direct-sum
technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and
the tree algorithms. Simulations of baryonic matter in the Universe often use
hydrodynamic codes based on both particle methods that discretise mass, and
grid-based methods. We briefly describe Eulerian grid methods, and also some
variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 12; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
- …