64 research outputs found

    Education as the management of research universities students’ socialization

    Get PDF
    Β© 2016, Econjournals. All rights reserved.The relevance of the study is reasoned by the demand for professionals who are not only competitive in the labor market, but also ready to construct career in the flow of social transformations. The processes of socialization and vocational education are dialectically interrelated. Education, as a structural component of vocational education is considered as the management process of socialization, providing personal self-realization, its positioning as an active entity of social reality. The purpose of the paper is to identify the characteristics of education as a management process of research universities students’ socialization. The leading method is the method of action research, allowing to obtain new knowledge about education as the management of socialization process and to propose methods of educating of research universities students. The article defines the essence of socialization, as a process of assimilation of social experience by joining the social environment and active reproduction of social relations’ system; functions are clarified (assimilation of social information, the development of diverse forms of activities and communication, the awareness of being the actor of social reality, self-realization, participation in the reproduction of social experience) and types (positive, negative, reformation) of socialization; the features of education as a students’ socialization process management are revealed (subjectivity, adaptability, humanity, dedication, nationality); the methods of education are proposed (psychological-pedagogical, subject-creative, cognitive-oriented) as the management process of research universities students’ socialization. Article Submissions can be useful for teachers of research universities; for centers of personnel advanced training and retraining in the training content selection and structuring of research universities’ scientific and pedagogical staff

    Soil water regime and crop yields in relation to various technologies of cultivation in the Kulunda Steppe (Altai Krai)

    Get PDF
    This article presents the results of crop yield in areas with different technologies of cultivation based on the network of automatic stations that provide data on climatic and soil-hydrological monitoring in the dry steppe during the vegetation period of May–September 2013–2016 . These dataΒ  on regional ecological and climatic parameters are of great interest to the ecologists, plant physiologists, and farmers working in the Kulunda Plain (Altai Territory). We compared the following options for cropping technologies: the modern system, which is the "no-till", technology without autumn tillage;the intensive technology of deep autumn tillage by plough PG-3-5 at a depth of 22–24 cm. Cultivation of crops was carried out using the following scheme of crop rotation: the modern system: 1–2–3–4 (wheat – peas – wheat – rape); the intensive system: 5/6 – 7/8 – 9/10 (fallow – wheat – wheat). We believe that the use of modern technology in these conditions is better due to exchange between the different layers of soil. WhenΒ  the ordinary Soviet system , the so-called "plow sole" , was used , at a depth of 24 cm , we observed that this creates a water conductivity barrier that seems to preclude the possibility of lifting water from the lower horizons. Results of the study of infiltration of soil moisture at the depth of 30 and 60 cmΒ  have shown in some years the advantages of the modern technology over the ordinary Soviet system: in the version with the use of modern technology we can trace better exchange between the various horizons and , probably,Β  moisture replenishment from the lower horizons. Differences in individual observation periods are comparatively large due to the redistribution of soil moisture, depending on the weather conditions, the crops used in the crop rotations, and cultivation techniques. Moreover, the average moisture reserves within the one meter layer did not show any significant differences during the growing seasons of 2013–2016 . In terms of soil moisture usage and productive grain yield according to the four year experiment, the application of the modern technology with crop rotation "wheat – rape – wheat – peas" was more effective than the ordinary Soviet system with crop rotation "wheat – fallow – wheat – wheat". The four-year observation period is clearly insufficient to identify the advantages of the modern system, as during this time it is impossible to significantly improve soil quality indicators, which will continue to determine its water-retaining properties and moisture accumulation

    Π’ΠΎΠ΄Π½Ρ‹ΠΉ Ρ€Π΅ΠΆΠΈΠΌ ΠΏΠΎΡ‡Π²Ρ‹ ΠΈ ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… тСхнологиях воздСлывания Π² ΠšΡƒΠ»ΡƒΠ½Π΄ΠΈΠ½ΡΠΊΠΎΠΉ стСпи Алтайского края

    Get PDF
    This article presents the results of crop yield in areas with different technologies of cultivation based on the network of automatic stations that provide data on climatic and soil-hydrological monitoring in the dry steppe during the vegetation period of May–September 2013–2016 . These dataΒ  on regional ecological and climatic parameters are of great interest to the ecologists, plant physiologists, and farmers working in the Kulunda Plain (Altai Territory). We compared the following options for cropping technologies: the modern system, which is the "no-till", technology without autumn tillage;the intensive technology of deep autumn tillage by plough PG-3-5 at a depth of 22–24 cm. Cultivation of crops was carried out using the following scheme of crop rotation: the modern system: 1–2–3–4 (wheat – peas – wheat – rape); the intensive system: 5/6 – 7/8 – 9/10 (fallow – wheat – wheat). We believe that the use of modern technology in these conditions is better due to exchange between the different layers of soil. WhenΒ  the ordinary Soviet system , the so-called "plow sole" , was used , at a depth of 24 cm , we observed that this creates a water conductivity barrier that seems to preclude the possibility of lifting water from the lower horizons. Results of the study of infiltration of soil moisture at the depth of 30 and 60 cmΒ  have shown in some years the advantages of the modern technology over the ordinary Soviet system: in the version with the use of modern technology we can trace better exchange between the various horizons and , probably,Β  moisture replenishment from the lower horizons. Differences in individual observation periods are comparatively large due to the redistribution of soil moisture, depending on the weather conditions, the crops used in the crop rotations, and cultivation techniques. Moreover, the average moisture reserves within the one meter layer did not show any significant differences during the growing seasons of 2013–2016 . In terms of soil moisture usage and productive grain yield according to the four year experiment, the application of the modern technology with crop rotation "wheat – rape – wheat – peas" was more effective than the ordinary Soviet system with crop rotation "wheat – fallow – wheat – wheat". The four-year observation period is clearly insufficient to identify the advantages of the modern system, as during this time it is impossible to significantly improve soil quality indicators, which will continue to determine its water-retaining properties and moisture accumulation.ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ уроТайности ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π½Π° участках ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… тСхнологиях воздСлывания с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π΄Π°Π½Π½Ρ‹Ρ… сСти автоматичСских станций климатичСского ΠΈ ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎ-гидрологичСского ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π² сухой стСпи (Π·Π° Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ ΠΌΠ°ΠΉ – ΡΠ΅Π½Ρ‚ΡΠ±Ρ€ΡŒ 2013–2016 Π³Π³.). ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ эколого-климатичСским ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ интСрСс для экологов, Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΎΠ² растСний ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Ρ€ΠΎΠ², Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π° ΠšΡƒΠ»ΡƒΠ½Π΄ΠΈΠ½ΡΠΊΠΎΠΉ Ρ€Π°Π²Π½ΠΈΠ½Π΅. Π‘Ρ€Π°Π²Π½ΠΈΠ²Π°Π»ΠΈ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ воздСлывания ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€: соврСмСнная систСма, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ β€œno-till”, Π±Π΅Π· осСннСй ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹; интСнсивная тСхнология Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ осСннСй ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ ΠΎΡ€ΡƒΠ΄ΠΈΠ΅ΠΌ ΠŸΠ“-3-5 Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ 22–24 см. Π’ΠΎΠ·Π΄Π΅Π»Ρ‹Π²Π°Π½ΠΈΠ΅ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ осущСствляли с использованиСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ схСмы сСвооборотов: соврСмСнная систСма: 1 – 2 – 3 – 4 (ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – Π³ΠΎΡ€ΠΎΡ… – ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – рапс); интСнсивная систСма: 5/6 – 7/8 – 9/10 (ΠΏΠ°Ρ€ – ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – ΠΏΡˆΠ΅Π½ΠΈΡ†Π°). ΠŸΡ€ΠΈ использовании соврСмСнной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π»ΡƒΡ‡ΡˆΠ°Ρ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ слоями ΠΏΠΎΡ‡Π²Ρ‹. Π’ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ совСтской систСмы Ρ‚Π°ΠΊ называСмая «плуТная подошва» Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π΅ 24 см создаСт Π±Π°Ρ€ΡŒΠ΅Ρ€ водопроницаСмости, Ρ‡Ρ‚ΠΎ, Π²ΠΈΠ΄ΠΈΠΌΠΎ, прСпятствуСт ΠΏΠΎΠ΄ΡŠΠ΅ΠΌΡƒ Π²Π»Π°Π³ΠΈ с Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ… Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ изучСния Ρ…ΠΎΠ΄Π° влаТности ΠΏΠΎΡ‡Π²Ρ‹ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π°Ρ… 30 ΠΈ 60 см Π·Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Π³ΠΎΠ΄Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ прСимущСства соврСмСнной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ систСмой: Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ с использованиСм соврСмСнной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ прослСТиваСтся Π»ΡƒΡ‡ΡˆΠ°Ρ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°ΠΌΠΈ ΠΈ, вСроятно, происходит восполнСниС Π²Π»Π°Π³ΠΈ с Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ… Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚ΠΎΠ². Различия Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ наблюдСний Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ обусловлСны пСрСраспрСдСлСниСм Π²Π»Π°Π³ΠΈ Π² ΠΏΠΎΡ‡Π²Π΅ Π² зависимости ΠΎΡ‚ ΠΏΠΎΠ³ΠΎΠ΄Π½Ρ‹Ρ… условий, ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π² сСвооборотС ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΡ… воздСлывания. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ срСдняя Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° влагозапасов Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΈ 2013–2016 Π³Π³. Π² ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠΌ слоС сущСствСнно Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»Π°ΡΡŒ. Π‘ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния использования ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎΠΉ Π²Π»Π°Π³ΠΈ ΠΈ получСния ΠΏΡ€ΠΈΠ±Π°Π²ΠΊΠΈ уроТая ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π·Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³ΠΎΠ΄Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ соврСмСнной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ с сСвооборотом Β«ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – рапс – ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – Π³ΠΎΡ€ΠΎΡ…Β» Π±Ρ‹Π»ΠΎ Π±ΠΎΠ»Π΅Π΅ эффСктивным, Ρ‡Π΅ΠΌ обычная систСма с сСвооборотом Β«ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – ΠΏΠ°Ρ€ – ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – ΠΏΡˆΠ΅Π½ΠΈΡ†Π°Β». Π§Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…Π»Π΅Ρ‚Π½ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ наблюдСний явно нСдостаточСн для выявлСния прСимущСств соврСмСнной систСмы, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π·Π° это врСмя Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ сущСствСнно ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ качСствСнныС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΠΎΡ‡Π²Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² дальнСйшСм Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π΅Π΅ Π²ΠΎΠ΄ΠΎΡƒΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ характСристики ΠΈ Π²Π»Π°Π³ΠΎΠ½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅.Β ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ уроТайности ΡΠ΅Π»ΡŒΡΠΊΠΎΡ…ΠΎΠ·ΡΠΉΡΡ‚Π²Π΅Π½Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π½Π° участках ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… тСхнологиях воздСлывания с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π΄Π°Π½Π½Ρ‹Ρ… сСти автоматичСских станций климатичСского ΠΈ ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎ-гидрологичСского ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π² сухой стСпи (Π·Π° Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ ΠΌΠ°ΠΉ – ΡΠ΅Π½Ρ‚ΡΠ±Ρ€ΡŒ 2013–2016 Π³Π³.). ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½Ρ‹ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌ эколого-климатичСским ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ интСрСс для экологов, Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΎΠ² растСний ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Ρ€ΠΎΠ², Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π° ΠšΡƒΠ»ΡƒΠ½Π΄ΠΈΠ½ΡΠΊΠΎΠΉ Ρ€Π°Π²Π½ΠΈΠ½Π΅. Π‘Ρ€Π°Π²Π½ΠΈΠ²Π°Π»ΠΈ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ воздСлывания ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€: соврСмСнная систСма, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ β€œno-till”, Π±Π΅Π· осСннСй ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹; интСнсивная тСхнология Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ осСннСй ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ ΠΎΡ€ΡƒΠ΄ΠΈΠ΅ΠΌ ΠŸΠ“-3-5 Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ 22–24 см. Π’ΠΎΠ·Π΄Π΅Π»Ρ‹Π²Π°Π½ΠΈΠ΅ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ осущСствляли с использованиСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ схСмы сСвооборотов: соврСмСнная систСма: 1 – 2 – 3 – 4 (ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – Π³ΠΎΡ€ΠΎΡ… – ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – рапс); интСнсивная систСма: 5/6 – 7/8 – 9/10 (ΠΏΠ°Ρ€ – ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – ΠΏΡˆΠ΅Π½ΠΈΡ†Π°). ΠŸΡ€ΠΈ использовании соврСмСнной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π»ΡƒΡ‡ΡˆΠ°Ρ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ слоями ΠΏΠΎΡ‡Π²Ρ‹. Π’ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ совСтской систСмы Ρ‚Π°ΠΊ называСмая «плуТная подошва» Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π΅ 24 см создаСт Π±Π°Ρ€ΡŒΠ΅Ρ€ водопроницаСмости, Ρ‡Ρ‚ΠΎ, Π²ΠΈΠ΄ΠΈΠΌΠΎ, прСпятствуСт ΠΏΠΎΠ΄ΡŠΠ΅ΠΌΡƒ Π²Π»Π°Π³ΠΈ с Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ… Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ изучСния Ρ…ΠΎΠ΄Π° влаТности ΠΏΠΎΡ‡Π²Ρ‹ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π°Ρ… 30 ΠΈ 60 см Π·Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Π³ΠΎΠ΄Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ прСимущСства соврСмСнной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ систСмой: Π² Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π΅ с использованиСм соврСмСнной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ прослСТиваСтся Π»ΡƒΡ‡ΡˆΠ°Ρ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°ΠΌΠΈ ΠΈ, вСроятно, происходит восполнСниС Π²Π»Π°Π³ΠΈ с Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ… Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚ΠΎΠ². Различия Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ наблюдСний Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ обусловлСны пСрСраспрСдСлСниСм Π²Π»Π°Π³ΠΈ Π² ΠΏΠΎΡ‡Π²Π΅ Π² зависимости ΠΎΡ‚ ΠΏΠΎΠ³ΠΎΠ΄Π½Ρ‹Ρ… условий, ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π² сСвооборотС ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΡ… воздСлывания. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ срСдняя Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° влагозапасов Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π²Π΅Π³Π΅Ρ‚Π°Ρ†ΠΈΠΈ 2013–2016 Π³Π³. Π² ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠΌ слоС сущСствСнно Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»Π°ΡΡŒ. Π‘ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния использования ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎΠΉ Π²Π»Π°Π³ΠΈ ΠΈ получСния ΠΏΡ€ΠΈΠ±Π°Π²ΠΊΠΈ уроТая ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π·Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³ΠΎΠ΄Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ соврСмСнной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ с сСвооборотом Β«ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – рапс – ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – Π³ΠΎΡ€ΠΎΡ…Β» Π±Ρ‹Π»ΠΎ Π±ΠΎΠ»Π΅Π΅ эффСктивным, Ρ‡Π΅ΠΌ обычная систСма с сСвооборотом Β«ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – ΠΏΠ°Ρ€ – ΠΏΡˆΠ΅Π½ΠΈΡ†Π° – ΠΏΡˆΠ΅Π½ΠΈΡ†Π°Β». Π§Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…Π»Π΅Ρ‚Π½ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ наблюдСний явно нСдостаточСн для выявлСния прСимущСств соврСмСнной систСмы, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π·Π° это врСмя Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ сущСствСнно ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ качСствСнныС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΠΎΡ‡Π²Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² дальнСйшСм Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π΅Π΅ Π²ΠΎΠ΄ΠΎΡƒΠ΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ характСристики ΠΈ Π²Π»Π°Π³ΠΎΠ½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅.

    The battle over Syria's reconstruction

    Get PDF
    Reconstruction is becoming the new battleground in the Syrian conflictβ€”its continuation by other means. It is instrumentalized by the regime as a way to reconsolidate its control over the country and by rival regional and international powers to shape the internal balance of power and establish spheres of influence in the country. The paper examines the Asad regime’s practices, including co-optation of militia leaders via reconstruction concessions and use of reconstruction to clear strategic areas of opposition-dominated urban settlements. The paper then surveys how the geopolitical struggle in Syria has produced an asymmetry as regards reconstruction: those powers that lost the geo-political contest on the ground seek to use geo-economic superiority to reverse the geo-political outcome. Then the impact of proxy wars and spheres of influence in the country on the security context for reconstruction is examined. Finally, the reconstruction initiatives of the various external parties are assessed, including Russia, Iran and Turkey as well as the spoiler role by which the US seeks to obstruct reconstruction that would spell victory in Syria for its Russian and Iranian rivals.PostprintPeer reviewe

    ВлияниС ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎ-ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² ΠΈ NO-Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ систСмы ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ€Π°Π½Π΅Π²Ρ‹Ρ… ослоТнСний Π² ΠΊΠ°Ρ€Π΄ΠΈΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ

    Get PDF
    Nitric oxide (NO) is a universal biological mediator that has a multifaceted effect on physiological and pathological processes in various organs and systems of the body. It is known that NO-therapy is a powerful stimulator of a positive effect on the course of the wound process, especially in complicated wounds.Objective: to evaluate the use of the combined effect of NO-containing air-plasma flows on the parameters of the blood system in the treatment of infectious wound complications in cardiac surgery patients.Materials and methods. A total of 60 patients were included in the study: 31 (52%) men and 29 (48%) women aged 29 to 79 years (mean 63.67 Β± 7.6 years). All patients were divided into two groups: Group I – 30 patients who received treatment for sternomediastinitis using a combined exposure to air-plasma flow and exogenous nitric oxide; Group II – 30 patients who were treated for sternomediastinitis according to the clinical guidelines for the surgical treatment of patients with postoperative mediastinitis and osteomyelitis of the sternum and ribs.Results. The use of the combined effect of NO-containing air-plasma flows for the treatment of sternomediastinitis is accompanied by a decrease in the level of acute phase proteins already by 3 days, normalization of leukocytes and neutrophils by 10 days after the start of therapy, and prevents hyperaggregation and spontaneous aggregation of platelets.Conclusion. The use of the combined method of low-temperature plasma and exogenous nitrogen monoxide in the local treatment of infectious wound complications after cardiac surgery is justified and effective. No reliable confirmation of the cytotoxic effect of exogenous nitric oxide in the applied dosage on the elements of red blood was found in this studyОксид Π°Π·ΠΎΡ‚Π° (NO) – ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ биологичСский ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€, ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ многостороннСС влияниС Π½Π° физиологичСскиС ΠΈ патологичСскиС процСссы Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½Π°Ρ… ΠΈ систСмах ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ NO-тСрапия – это ΠΌΠΎΡ‰Π½Ρ‹ΠΉ стимулятор ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ воздСйствия Π½Π° Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Ρ€Π°Π½Π΅Π²ΠΎΠ³ΠΎ процСсса, особСнно Π² ослоТнСнных Ρ€Π°Π½Π°Ρ….ЦСль исслСдования: ΠΎΡ†Π΅Π½ΠΊΠ° использования ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ воздСйствия NO-coΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΡ… Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎ-ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² Π½Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ систСмы ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ€Π°Π½Π΅Π²Ρ‹Ρ… ослоТнСний Ρƒ кардиохирургичСских Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ….ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования. ВсСго Π² исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ 60 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²: 31 (52%) ΠΌΡƒΠΆΡ‡ΠΈΠ½Π° ΠΈ 29 (48%) ΠΆΠ΅Π½Ρ‰ΠΈΠ½ Π² возрастС ΠΎΡ‚ 29 Π΄ΠΎ 79 Π»Π΅Ρ‚ (срСднСС 63,67 Β± 7,6 Π³ΠΎΠ΄Π°). ВсС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ распрСдСлСны Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: I Π³Ρ€ΡƒΠΏΠΏΠ° – 30 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ стСрномСдиастинита ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ с использованиСм ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ воздСйствия Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎ-ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΈ экзогСнного оксида Π°Π·ΠΎΡ‚Π°; II Π³Ρ€ΡƒΠΏΠΏΠ° – 30 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ стСрномСдиастинита ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ согласно клиничСским рСкомСндациям ΠΏΠΎ хирургичСскому Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… послСопСрационным мСдиастинитом ΠΈ остСомиСлитом Π³Ρ€ΡƒΠ΄ΠΈΠ½Ρ‹ ΠΈ Ρ€Π΅Π±Π΅Ρ€.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ воздСйствия NO-coΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΠΈΡ… Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎ-ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² для лСчСния стСрномСдиастинитов сопровоТдаСтся сниТСниСм уровня острофазных Π±Π΅Π»ΠΊΠΎΠ² ΡƒΠΆΠ΅ ΠΊ 3-ΠΌ сут, Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² ΠΊ 10-ΠΌ сут послС Π½Π°Ρ‡Π°Π»Π° Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, ΠΏΡ€Π΅Π΄ΡƒΠΏΡ€Π΅ΠΆΠ΄Π°Π΅Ρ‚ Π³ΠΈΠΏΠ΅Ρ€Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΡŽ ΠΈ ΡΠΏΠΎΠ½Ρ‚Π°Π½Π½ΡƒΡŽ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΡŽ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ².Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ИспользованиС Π² мСстном Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ€Π°Π½Π΅Π²Ρ‹Ρ… ослоТнСний послС кардиохирургичСских ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΈ экзогСнного монооксида Π°Π·ΠΎΡ‚Π° обоснованно ΠΈ эффСктивно. ДостовСрного подтвСрТдСния цитотоксичСского эффСкта экзогСнного оксида Π°Π·ΠΎΡ‚Π° Π² примСняСмой Π΄ΠΎΠ·ΠΈΡ€ΠΎΠ²ΠΊΠ΅ Π½Π° элСмСнты красной ΠΊΡ€ΠΎΠ²ΠΈ Π² ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΠΌ исслСдовании выявлСно Π½Π΅ Π±Ρ‹Π»ΠΎ.

    Restoring voice function after open diagonal resection of the larynx

    Get PDF
    The study objective is to perform the acoustic analysis of voice in patients after open diagonal resection of the larynx.Materials and methods. A total of 112 patients underwent diagonal resection of the larynx; of them 73 hadfrontolateral resection and 39 had expanded frontolateral resection. Primary laryngeal cancer was diagnosed in 107 patients; five patients had relapses after radiation therapy. Fifty-six participants underwent acoustic analysis of voice before surgery, 52 participants underwent it 1 month postoperatively, and 112 participants had it after completing their rehabilitation (6 months to 10 years postoperatively). To determine normal acoustic characteristics of voice, we examined 80 men with normal voice. We measured voice fundamental frequency (FF), maximum and minimum FF, FF variability, jitter, shimmer, voice intensity, amplitude of fundamental tone’s harmonics and their difference. Speech rehabilitation included breathing exercises according to E. Ya. Zolotareva and speech training according to S.L. Taptapova.Results. Patients with laryngeal cancer demonstrated significant changes in the acoustic characteristics of their voice (p <0.05) compared to healthy individuals, including increased mean FF (f0) (up to 143 Β± 45 Hz vs 118 Β± 18 Hz in controls), decreased voice intensity (from 60 Β± 8 to 43 Β± 8 dB), and almost 2-fold decrease in the amplitude of fundamental tone’s harmonics (Ο‰0, 2 Ο‰0, 3 Ο‰0). We also found an increased dispersion and variability of acoustic characteristics assessed compared to healthy individuals. The analysis of long-term treatment outcomes demonstrated more significant improvement of voice acoustic characteristics in patients who underwent speech rehabilitation compared to those who had no rehabilitation.Conclusion. Open resection of the larynx with endoscopic removal of granulations and ligatures and laser restoration of the laryngeal lumen by dissecting the scars complemented by speech rehabilitation allow restoring respiratory function in 91.1 % of patients and restoring voice in 91.8 % of patients (to achieve acoustic characteristics close to normal)
    • …
    corecore