964 research outputs found
Bethe subalgebras in affine Birman--Murakami--Wenzl algebras and flat connections for q-KZ equations
Commutative sets of Jucys-Murphyelements for affine braid groups of
types were defined. Construction of
-matrix representations of the affine braid group of type and its
distinguish commutative subgroup generated by the -type Jucys--Murphy
elements are given. We describe a general method to produce flat connections
for the two-boundary quantum Knizhnik-Zamolodchikov equations as necessary
conditions for Sklyanin's type transfer matrix associated with the two-boundary
multicomponent Zamolodchikov algebra to be invariant under the action of the
-type Jucys--Murphy elements. We specify our general construction to
the case of the Birman--Murakami--Wenzl algebras. As an application we suggest
a baxterization of the Dunkl--Cherednik elements in the double affine
Hecke algebra of type
The Issues of Development of a Creative Professional
The article covers the issues of engineering education. The authors take as a premise that the most important quality of an engineer is his/her creativity, therefore the goal of engineering education is to form and develop students’ creativity. This article evaluates the opportunity of developing the creative constituent of engineers’ skills. The authors draw the conclusion about the lack of disciplines that would favor the development of creativity. They focus on the over-disciplinary function of the Philosophical and Methodological Problems of Science and Engineering discipline; the function allows to regard the history and methodology of science as a foundation for development of creative skills that ensure the innovative activity of future engineers
Methodological Foundations of Engineering Education
A problem of methodology choice for engineering education is considered. The Authors focused on matching it with purposes of maximal efficiency and effectiveness of schooling engineers and maximal satisfying needs of society and economics in competent cadres
A note on quantization operators on Nichols algebra model for Schubert calculus on Weyl groups
We give a description of the (small) quantum cohomology ring of the flag
variety as a certain commutative subalgebra in the tensor product of the
Nichols algebras. Our main result can be considered as a quantum analog of a
result by Y. Bazlov
From the quantum Jacobi-Trudi and Giambelli formula to a nonlinear integral equation for thermodynamics of the higher spin Heisenberg model
We propose a nonlinear integral equation (NLIE) with only one unknown
function, which gives the free energy of the integrable one dimensional
Heisenberg model with arbitrary spin. In deriving the NLIE, the quantum
Jacobi-Trudi and Giambelli formula (Bazhanov-Reshetikhin formula), which gives
the solution of the T-system, plays an important role. In addition, we also
calculate the high temperature expansion of the specific heat and the magnetic
susceptibility.Comment: 18 pages, LaTeX; some explanations, 2 figures, one reference added;
typos corrected; to appear in J. Phys. A: Math. Ge
Ground state and low excitations of an integrable chain with alternating spins
An anisotropic integrable spin chain, consisting of spins and
, is investigated \cite{devega}. It is characterized by two real
parameters and , the coupling constants of the spin
interactions. For the case and the ground state
configuration is obtained by means of thermodynamic Bethe ansatz. Furthermore
the low excitations are calculated. It turns out, that apart from free magnon
states being the holes in the ground state rapidity distribution, there exist
bound states given by special string solutions of Bethe ansatz equations (BAE)
in analogy to \cite{babelon}. The dispersion law of these excitations is
calculated numerically.Comment: 16 pages, LaTeX, uses ioplppt.sty and PicTeX macro
Billiard Representation for Multidimensional Cosmology with Intersecting p-branes near the Singularity
Multidimensional model describing the cosmological evolution of n Einstein
spaces in the theory with l scalar fields and forms is considered. When
electro-magnetic composite p-brane ansatz is adopted, and certain restrictions
on the parameters of the model are imposed, the dynamics of the model near the
singularity is reduced to a billiard on the (N-1)-dimensional Lobachevsky
space, N = n+l. The geometrical criterion for the finiteness of the billiard
volume and its compactness is used. This criterion reduces the problem to the
problem of illumination of (N-2)-dimensional sphere by point-like sources. Some
examples with billiards of finite volume and hence oscillating behaviour near
the singularity are considered. Among them examples with square and triangle
2-dimensional billiards (e.g. that of the Bianchi-IX model) and a 4-dimensional
billiard in ``truncated'' D = 11 supergravity model (without the Chern-Simons
term) are considered. It is shown that the inclusion of the Chern-Simons term
destroys the confining of a billiard.Comment: 27 pages Latex, 3 figs., submit. to Class. Quantum Gra
Boundary Ground Ring in Minimal String Theory
We obtain relations among boundary states in bosonic minimal open string
theory using the boundary ground ring. We also obtain a difference equation
that boundary correlators must satisfy.Comment: 28 pages, 1 figur
Boundary bound states and boundary bootstrap in the sine-Gordon model with Dirichlet boundary conditions.
We present a complete study of boundary bound states and related boundary
S-matrices for the sine-Gordon model with Dirichlet boundary conditions. Our
approach is based partly on the bootstrap procedure, and partly on the explicit
solution of the inhomogeneous XXZ model with boundary magnetic field and of the
boundary Thirring model. We identify boundary bound states with new ``boundary
strings'' in the Bethe ansatz. The boundary energy is also computed.Comment: 25 pages, harvmac macros Report USC-95-001
- …