50 research outputs found

    Selfconsistent gauge-invariant theory of in-plane infrared response of high-Tc cuprate superconductors involving spin fluctuations

    Full text link
    We report on results of our theoretical study of the in-plane infrared conductivity of the high-Tc cuprate superconductors using the model where charged planar quasiparticles are coupled to spin fluctuations. The computations include both the renormalization of the quasiparticles and the corresponding modification of the current-current vertex function (vertex correction), which ensures gauge invariance of the theory and local charge conservation in the system. The incorporation of the vertex corrections leads to an increase of the total intraband optical spectral weight (SW) at finite frequencies, a SW transfer from far infrared to mid infrared, a significant reduction of the SW of the superconducting condensate, and an amplification of characteristic features in the superconducting state spectra of the inverse scattering rate 1/tau. We also discuss the role of selfconsistency and propose a new interpretation of a kink occurring in the experimental low temperature spectra of 1/tau around 1000cm^{-1}.Comment: 9 pages with 6 figures, submitted to Physical Review

    Approximate tight-binding sum rule for the superconductivity related change of c-axis kinetic energy in multilayer cuprate superconductors

    Full text link
    We present an extension of the c-axis tight-binding sum rule discussed by Chakravarty, Kee, and Abrahams [Phys. Rev. Lett. 82, 2366 (1999)] that applies to multilayer high-Tc cuprate superconductors (HTCS) and use it to estimate--from available infrared data--the change below Tc of the c-axis kinetic energy, Hc, in YBa2Cu3O(7-delta) (delta=0.45,0.25,0.07), Bi2Sr2CaCu2O8, and Bi2Sr2Ca2Cu3O10. In all these compounds Hc decreases below Tc and except for Bi2Sr2CaCu2O8 the change of Hc is of the same order of magnitude as the condensation energy. This observation supports the hypothesis that in multilayer HTCS superconductivity is considerably amplified by the interlayer tunnelling mechanism.Comment: 6 pages, 2 figure

    Interpretation of the in-plane infrared response of the high-Tc cuprate superconductors involving spin fluctuations revisited

    Full text link
    The in-plane infrared response of the high-Tc cuprate superconductors was studied using the spin-fermion model, where charged quasiparticles of the copper-oxygen planes are coupled to spin fluctuations. First, we analyzed structures of the superconducting-state conductivity reflecting the coupling of the quasiparticles to the resonance mode observed by neutron scattering. The conductivity computed with the input spin susceptibility in the simple form of the mode exhibits two prominent features: an onset of the real part of the conductivity starting around the frequency of the mode omega_{0} and a maximum of a related function W(omega), roughly proportional to the second derivative of the scattering rate, centered approximately at omega=omega_{0}+Delta_{0}/hbar, where Delta_{0} is the maximum value of the superconducting gap. The two structures are well known from earlier studies. Their physical meaning, however, has not been sufficiently elucidated thus far. Our analysis involving quasiparticle spectral functions provides a clear interpretation. Second, we explored the role played by the spin-fluctuation continuum. Third, we investigated the temperature dependence of the conductivity, of the intraband spectral weight, and of the effective kinetic energy. The changes of the latter two quantities below Tc are determined by the formation of the gap, by a feedback effect of the spin fluctuations on the quasiparticles, and by a significant shift of the chemical potential.Comment: 20 pages, 18 figures, submitted to Physical Review

    Spectroscopic distinction between the normal state pseudogap and the superconducting gap of cuprate high T_{c} superconductors

    Get PDF
    We report on broad-band infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-d} (R=Y, Nd, and La) single crystals. Our data provide a detailed account of the spectral weight (SW) redistributions due to the normal state pseudogap (PG) and the superconducting (SC) gap. They show that these phenomena involve different energy scales, exhibit distinct doping dependencies and thus are likely of different origin. In particular, the SW redistribution in the PG state closely resembles the one of a conventional charge- or spin density wave (CDW or SDW) system.Comment: 4 pages, 4 figure

    C-axis lattice dynamics in Bi-based cuprate superconductors

    Full text link
    We present results of a systematic study of the c axis lattice dynamics in single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both experimental data obtained by spectral ellipsometry on single crystals and theoretical calculations. The calculations are carried out within the framework of a classical shell model, which includes long-range Coulomb interactions and short-range interactions of the Buckingham form in a system of polarizable ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve good agreement between the calculated A2u eigenfrequencies and the experimental values of the c axis TO phonon frequencies which allows us to make a reliable phonon mode assignment for all three Bi-based cuprate superconductors. We also present the results of our shell model calculations for the Gamma-point A1g symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is based on the published experimental Raman spectra. The superconductivity-induced phonon anomalies recently observed in the c axis infrared and resonant Raman scattering spectra in trilayer Bi2223 are consistently explained with the suggested assignment.Comment: 29 pages, 13 figure

    Evidence of precursor superconductivity as high as 180 K from infrared spectroscopy

    Full text link
    We show that a multilayer analysis of the infrared c-axis response of RBa2Cu3O7-d (R=Y, Gd, Eu) provides important new information about the anomalous normal state properties of underdoped cuprate high temperature superconductors. Besides competing correlations which give rise to a pseudogap that depletes the low-energy electronic states below T*>>Tc, it enables us to identify the onset of a precursor superconducting state below Tons>Tc. We map out the doping phase diagram of Tons which reaches a maximum of ~180 K at strong underdoping and present magnetic field dependent data which confirm our conclusions.Comment: 5 pages, 3 figure

    Extracting the electron--boson spectral function α2\alpha^2F(ω\omega) from infrared and photoemission data using inverse theory

    Full text link
    We present a new method of extracting electron-boson spectral function α2\alpha^2F(ω\omega) from infrared and photoemission data. This procedure is based on inverse theory and will be shown to be superior to previous techniques. Numerical implementation of the algorithm is presented in detail and then used to accurately determine the doping and temperature dependence of the spectral function in several families of high-Tc_c superconductors. Principal limitations of extracting α2\alpha^2F(ω\omega) from experimental data will be pointed out. We directly compare the IR and ARPES α2\alpha^2F(ω\omega) and discuss the resonance structure in the spectra in terms of existing theoretical models
    corecore