220 research outputs found

    The path integral measure, constraints and ghosts for massive gravitons with a cosmological constant

    Full text link
    For massive gravity in a de Sitter background one encounters problems of stability when the curvature is larger than the graviton mass. I analyze this situation from the path integral point of view and show that it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint for massive gravity is incorporated and the proper treatment of the path integral measure is taken into account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the same choices as in the massless case), one obtains the opposite bound on the graviton mass.Comment: LaTeX, 10 pages, to appear in Phys. Rev.

    Hard thermal loops with a background plasma velocity

    Get PDF
    I consider the calculation of the two and three-point functions for QED at finite temperature in the presence of a background plasma velocity. The final expressions are consistent with Lorentz invariance, gauge invariance and current conservation, pointing to a straightforward generalization of the hard thermal loop formalism to this physical situation. I also give the resulting expression for the effective action and identify the various terms.Comment: 11 pages, no figure

    Plasmon interactions in the quark-gluon plasma

    Get PDF
    Yang-Mills theory at finite temperature is rewritten as a theory of plasmons which provides a Hamiltonian framework for perturbation theory with resummation of hard thermal loops.Comment: 12 pages, LaTeX, minor typos corrected, discussion adde

    Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers

    Full text link
    We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field, H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H->0. Several features of the bound states are reproduced using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter

    Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential

    Get PDF
    Magneto-optical microscopy and magnetometry have been used to study 19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film 20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly 21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially 22 periodic pinning potential for domain walls propagating through the continuous 23 magnetic film. When reversing the applied field with respect to the static nanodot 24 array magnetization orientation, strong asymmetries in the wall velocity and switching 25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is 26 characterized by a large bias field of dipolar origin which is linked to the wall velocity 27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields 28 where the domains become round and compact. A field-polarity-controlled transition 29 from dendritic to compact faceted domain structures is also seen at low field and a 30 model is proposed to interpret the transition

    Aging dynamics of non-linear elastic interfaces: the Kardar-Parisi-Zhang equation

    Full text link
    In this work, the out-of-equilibrium dynamics of the Kardar-Parisi-Zhang equation in (1+1) dimensions is studied by means of numerical simulations, focussing on the two-times evolution of an interface in the absence of any disordered environment. This work shows that even in this simple case, a rich aging behavior develops. A multiplicative aging scenario for the two-times roughness of the system is observed, characterized by the same growth exponent as in the stationary regime. The analysis permits the identification of the relevant growing correlation length, accounting for the important scaling variables in the system. The distribution function of the two-times roughness is also computed and described in terms of a generalized scaling relation. These results give good insight into the glassy dynamics of the important case of a non-linear elastic line in a disordered medium.Comment: 14 pages, 6 figure

    Spatially periodic domain wall pinning potentials: Asymmetric pinning and dipolar biasing

    Get PDF
    Domain wall propagation has been measured in continuous, weakly disordered, quasi-two-dimensional, Ising-like magnetic layers that are subject to spatially periodic domain wall pinning potentials. The potentials are generated non-destructively using the stray magnetic field of ordered arrays of magnetically hard [Co/Pt]m_m nanoplatelets which are patterned above and are physically separated from the continuous magnetic layer. The effect of the periodic pinning potentials on thermally activated domain wall creep dynamics is shown to be equivalent, at first approximation, to that of a uniform, effective retardation field, HretH_{ret}, which acts against the applied field, HH. We show that HretH_{ret} depends not only on the array geometry but also on the relative orientation of HH and the magnetization of the nanoplatelets. A result of the latter dependence is that wall-mediated hysteresis loops obtained for a set nanoplatelet magnetization exhibit many properties that are normally associated with ferromagnet/antiferromagnet exchange bias systems. These include a switchable bias, coercivity enhancement and domain wall roughness that is dependent on the applied field polarity.Comment: 12 pages, 9 figure

    A meta-analysis of state-of-the-art electoral prediction from Twitter data

    Full text link
    Electoral prediction from Twitter data is an appealing research topic. It seems relatively straightforward and the prevailing view is overly optimistic. This is problematic because while simple approaches are assumed to be good enough, core problems are not addressed. Thus, this paper aims to (1) provide a balanced and critical review of the state of the art; (2) cast light on the presume predictive power of Twitter data; and (3) depict a roadmap to push forward the field. Hence, a scheme to characterize Twitter prediction methods is proposed. It covers every aspect from data collection to performance evaluation, through data processing and vote inference. Using that scheme, prior research is analyzed and organized to explain the main approaches taken up to date but also their weaknesses. This is the first meta-analysis of the whole body of research regarding electoral prediction from Twitter data. It reveals that its presumed predictive power regarding electoral prediction has been rather exaggerated: although social media may provide a glimpse on electoral outcomes current research does not provide strong evidence to support it can replace traditional polls. Finally, future lines of research along with a set of requirements they must fulfill are provided.Comment: 19 pages, 3 table

    Spin density wave dislocation in chromium probed by coherent x-ray diffraction

    Full text link
    We report on the study of a magnetic dislocation in pure chromium. Coherent x-ray diffraction profiles obtained on the incommensurate Spin Density Wave (SDW) reflection are consistent with the presence of a dislocation of the magnetic order, embedded at a few micrometers from the surface of the sample. Beyond the specific case of magnetic dislocations in chromium, this work may open up a new method for the study of magnetic defects embedded in the bulk.Comment: 8 pages, 7 figure
    corecore