6,613 research outputs found

    Structural Transformation in Pyrolytic Graphite Accompanying Deformation

    Get PDF
    Pyrolytic graphite deformation and structural transformatio

    Hydrodynamically enforced entropic trapping of Brownian particles

    Full text link
    We study the transport of Brownian particles through a corrugated channel caused by a force field containing curl-free (scalar potential) and divergence-free (vector potential) parts. We develop a generalized Fick-Jacobs approach leading to an effective one-dimensional description involving the potential of mean force. As an application, the interplay of a pressure-driven flow and an oppositely oriented constant bias is considered. We show that for certain parameters, the particle diffusion is significantly suppressed via the property of hyrodynamically enforced entropic particle trapping.Comment: 5 pages, 4 figures, in press with Physical Review Letter

    Giant enhancement of hydrodynamically enforced entropic trapping in thin channels

    Full text link
    Using our generalized Fick-Jacobs approach [Martens et al., PRL 110, 010601 (2013); Martens et al., Eur. Phys. J. Spec. Topics 222, 2453-2463 (2013)] and extensive Brownian dynamics simulations, we study particle transport through three-dimensional periodic channels of different height. Directed motion is caused by the interplay of constant bias acting along the channel axis and a pressure-driven flow. The tremendous change of the flow profile shape in channel direction with the channel height is reflected in a crucial dependence of the mean particle velocity and the effective diffusion coefficient on the channel height. In particular, we observe a giant suppression of the effective diffusivity in thin channels; four orders of magnitude compared to the bulk value.Comment: 16 pages, 8 figure

    Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mechanics on Lie Groups and Methods of Group Algebras

    Full text link
    In Part I of this series we presented the general ideas of applying group-algebraic methods for describing quantum systems. The treatment was there very "ascetic" in that only the structure of a locally compact topological group was used. Below we explicitly make use of the Lie group structure. Basing on differential geometry enables one to introduce explicitly representation of important physical quantities and formulate the general ideas of quasiclassical representation and classical analogy
    • …
    corecore