2,420 research outputs found

    Anisotropic Galactic Outflows and Enrichment of the Intergalactic Medium. I: Monte Carlo Simulations

    Get PDF
    We have developed an analytical model to describe the evolution of anisotropic galactic outflows. With it, we investigate the impact of varying opening angle on galaxy formation and the evolution of the IGM. We have implemented this model in a Monte Carlo algorithm to simulate galaxy formation and outflows in a cosmological context. Using this algorithm, we have simulated the evolution of a comoving volume of size [12h^(-1)Mpc]^3 in the LCDM universe. Starting from a Gaussian density field at redshift z=24, we follow the formation of ~20,000 galaxies, and simulate the galactic outflows produced by these galaxies. When these outflows collide with density peaks, ram pressure stripping of the gas inside the peak may result. This occurs in around half the cases and prevents the formation of galaxies. Anisotropic outflows follow the path of least resistance, and thus travel preferentially into low-density regions, away from cosmological structures (filaments and pancakes) where galaxies form. As a result, the number of collisions is reduced, leading to the formation of a larger number of galaxies. Anisotropic outflows can significantly enrich low-density systems with metals. Conversely, the cross-pollution in metals of objects located in a common cosmological structure, like a filament, is significantly reduced. Highly anisotropic outflows can travel across cosmological voids and deposit metals in other, unrelated cosmological structures.Comment: 32 pages, 9 figures (2 color). Revised version accepted in Ap

    Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism

    Full text link
    We present a formalism to study the metric perturbations of the Schwarzschild spacetime. The formalism is gauge invariant, and it is also covariant under two-dimensional coordinate transformations that leave the angular coordinates unchanged. The formalism is applied to the typical problem of calculating the gravitational waves produced by material sources moving in the Schwarzschild spacetime. We examine the radiation escaping to future null infinity as well as the radiation crossing the event horizon. The waveforms, the energy radiated, and the angular-momentum radiated can all be expressed in terms of two gauge-invariant scalar functions that satisfy one-dimensional wave equations. The first is the Zerilli-Moncrief function, which satisfies the Zerilli equation, and which represents the even-parity sector of the perturbation. The second is the Cunningham-Price-Moncrief function, which satisfies the Regge-Wheeler equation, and which represents the odd-parity sector of the perturbation. The covariant forms of these wave equations are presented here, complete with covariant source terms that are derived from the stress-energy tensor of the matter responsible for the perturbation. Our presentation of the formalism is concluded with a separate examination of the monopole and dipole components of the metric perturbation.Comment: 21 page

    Exploring the Moon: A Teacher's Guide with Activities for Earth and Space Sciences

    Get PDF
    The "Teacher's Guide" tells the story of the Moon's geological history and how scientists try to decipher the story. This background information may be useful reading for students as well. Key facts about the Moon appear on the "Moon ABCs" and "Rock ABCs" pages. These pages were named to emphasize the basic nature of the information. The "Progress in Lunar Science Chart" summarizes our knowledge about the Moon from 1959 to 1997

    Structure and spacing of cellulose microfibrils in woody cell walls of dicots

    Get PDF
    The structure of cellulose microfibrils in situ in wood from the dicotyledonous (hardwood) species cherry and birch, and the vascular tissue from sunflower stems, was examined by wide-angle X-ray and neutron scattering (WAXS and WANS) and small-angle neutron scattering (SANS). Deuteration of accessible cellulose chains followed by WANS showed that these chains were packed at similar spacings to crystalline cellulose, consistent with their inclusion in the microfibril dimensions and with a location at the surface of the microfibrils. Using the Scherrer equation and correcting for considerable lateral disorder, the microfibril dimensions of cherry, birch and sunflower microfibrils perpendicular to the [200] crystal plane were estimated as 3.0, 3.4 and 3.3 nm respectively. The lateral dimensions in other directions were more difficult to correct for disorder but appeared to be 3 nm or less. However for cherry and sunflower, the microfibril spacing estimated by SANS was about 4 nm and was insensitive to the presence of moisture. If the microfibril width was 3 nm as estimated by WAXS, the SANS spacing suggests that a non-cellulosic polymer segment might in places separate the aggregated cellulose microfibrils

    Non-volatile molecular memory elements based on ambipolar nanotube field effect transistors

    Full text link
    We have fabricated air-stable n-type, ambipolar carbon nanotube field effect transistors (CNFETs), and used them in nanoscale memory cells. N-type transistors are achieved by annealing of nanotubes in hydrogen gas and contacting them by cobalt electrodes. Scanning gate microscopy reveals that the bulk response of these devices is similar to gold-contacted p-CNFETs, confirming that Schottky barrier formation at the contact interface determines accessibility of electron and hole transport regimes. The transfer characteristics and Coulomb Blockade (CB) spectroscopy in ambipolar devices show strongly enhanced gate coupling, most likely due to reduction of defect density at the silicon/silicon-dioxide interface during hydrogen anneal. The CB data in the ``on''-state indicates that these CNFETs are nearly ballistic conductors at high electrostatic doping. Due to their nanoscale capacitance, CNFETs are extremely sensitive to presence of individual charge around the channel. We demonstrate that this property can be harnessed to construct data storage elements that operate at the few-electron level.Comment: 6 pages text, 3 figures and 1 table of content graphic; available as NanoLetters ASAP article on the we

    Carbon Nanotubes as Schottky Barrier Transistors

    Full text link
    We show that carbon nanotube transistors operate as unconventional "Schottky barrier transistors", in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance. Transistor characteristics are calculated for both idealized and realistic geometries, and scaling behavior is demonstrated. Our results explain a variety of experimental observations, including the quite different effects of doping and adsorbed gases. The electrode geometry is shown to be crucial for good device performance.Comment: 4 pages, 5 figures, appears in Physical Review Letter

    Note on flat foliations of spherically symmetric spacetimes

    Get PDF
    It is known that spherically symmetric spacetimes admit flat spacelike foliations. We point out a simple method of seeing this result via the Hamiltonian constraints of general relativity. The method yields explicit formulas for the extrinsic curvatures of the slicings.Comment: 4 pages, to appear in PRD, reference added, typos correcte

    Comment on `Hawking radiation from fluctuating black holes'

    Full text link
    Takahashi & Soda (2010 Class. Quantum Grav. v27 p175008, arXiv:1005.0286) have recently considered the effect (at lowest non-trivial order) of dynamical, quantized gravitational fluctuations on the spectrum of scalar Hawking radiation from a collapsing Schwarzschild black hole. However, due to an unfortunate choice of gauge, the dominant (even divergent) contribution to the coefficient of the spectrum correction that they identify is a pure gauge artifact. I summarize the logic of their calculation, comment on the divergences encountered in its course and comment on how they could be eliminated, and thus the calculation be completed.Comment: 12 pages, 1 fig; feynmp, amsref

    Instability of two interacting, quasi-monochromatic waves in shallow water

    Full text link
    We study the nonlinear interactions of waves with a doubled-peaked power spectrum in shallow water. The starting point is the prototypical equation for nonlinear uni-directional waves in shallow water, i.e. the Korteweg de Vries equation. Using a multiple-scale technique two defocusing coupled Nonlinear Schr\"odinger equations are derived. We show analytically that plane wave solutions of such a system can be unstable to small perturbations. This surprising result suggests the existence of a new energy exchange mechanism which could influence the behaviour of ocean waves in shallow water.Comment: 4 pages, 2 figure
    • 

    corecore