44 research outputs found

    Tunneling Spectroscopy of Quasiparticle Bound States in a Spinful Josephson Junction

    Full text link
    The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Sub-gap resonances for odd electron occupancy---interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states---evolve into Kondo-related resonances at higher magnetic fields. An additional zero bias peak of unknown origin is observed to coexist with the quasiparticle bound states.Comment: Supplementary information available here: https://dl.dropbox.com/u/1742676/Chang_Sup.pd

    Eddies in the Western Arctic Ocean From Spaceborne SAR Observations Over Open Ocean and Marginal Ice Zones

    Get PDF
    The Western Arctic Ocean is a host to major ocean circulation systems, many of which generate eddies that can transport water masses and corresponding tracers over long distances from their formation sites. However, comprehensive observations of critical eddy characteristics are currently not available and are limited to spatially and temporally sparse in situ observations. Here we use highā€resolution spaceborne synthetic aperture radar measurements to detect eddies from their surface imprints in iceā€free sea surface roughness, and in sea ice patterns throughout marginal ice zones. We provide the first estimate of eddy characteristics extending over the seasonally iceā€free and marginal ice zone regions of the Western Arctic Ocean, including their locations, diameters, and monthly distribution. Using available synthetic aperture radar data, we identified over 4,000 open ocean eddies, as well as over 3,500 eddies in marginal ice zones from June to October in 2007, 2011, and 2016. Eddies range in size between 0.5 and 100 km and are frequently found over the shelf and near continental slopes but also present in the deep Canada Basin and over the Chukchi Plateau. We find that cyclonic eddies are twice more frequent compared to anticyclonic eddies at the surface, distinct from the dominating anticyclonic eddies observed at depth by in situ moorings and iceā€tethered profilers. Our study supports the notion that eddies are ubiquitous in the Western Arctic Ocean even in the presence of sea ice and emphasizes the need for improved ocean observations and modeling at eddy scales

    Eddies in the Western Arctic Ocean From Spaceborne SAR Observations Over Open Ocean and Marginal Ice Zones

    Get PDF
    The Western Arctic Ocean is a host to major ocean circulation systems, many of which generate eddies that can transport water masses and corresponding tracers over long distances from their formation sites. However, comprehensive observations of critical eddy characteristics are currently not available and are limited to spatially and temporally sparse in situ observations. Here we use highā€resolution spaceborne synthetic aperture radar measurements to detect eddies from their surface imprints in iceā€free sea surface roughness, and in sea ice patterns throughout marginal ice zones. We provide the first estimate of eddy characteristics extending over the seasonally iceā€free and marginal ice zone regions of the Western Arctic Ocean, including their locations, diameters, and monthly distribution. Using available synthetic aperture radar data, we identified over 4,000 open ocean eddies, as well as over 3,500 eddies in marginal ice zones from June to October in 2007, 2011, and 2016. Eddies range in size between 0.5 and 100 km and are frequently found over the shelf and near continental slopes but also present in the deep Canada Basin and over the Chukchi Plateau. We find that cyclonic eddies are twice more frequent compared to anticyclonic eddies at the surface, distinct from the dominating anticyclonic eddies observed at depth by in situ moorings and iceā€tethered profilers. Our study supports the notion that eddies are ubiquitous in the Western Arctic Ocean even in the presence of sea ice and emphasizes the need for improved ocean observations and modeling at eddy scales

    Measuring the Decoherence of a Quantronium Qubit with the Cavity Bifurcation Amplifier

    Full text link
    Dispersive readouts for superconducting qubits have the advantage of speed and minimal invasiveness. We have developed such an amplifier, the Cavity Bifurcation Amplifier (CBA) [10], and applied it to the readout of the quantronium qubit [2]. It consists of a Josephson junction embedded in a microwave on-chip resonator. In contrast with the Josephson bifurcation amplifier [17], which has an on-chip capacitor shunting a junction, the resonator is based on a simple coplanar waveguide imposing a pre-determined frequency and whose other RF characteristics like the quality factor are easily controlled and optimized. Under proper microwave irradiation conditions, the CBA has two metastable states. Which state is adopted by the CBA depends on the state of a quantronium qubit coupled to the CBA's junction. Due to the MHz repetition rate and large signal to noise ratio we can show directly that the coherence is limited by 1/f gate charge noise when biased at the sweet spot - a point insensitive to first order gate charge fluctuations. This architecture lends itself to scalable quantum computing using a multi-resonator chip with multiplexed readouts.Comment: 6 pages, 5 figures To be published in Physical Review

    Fluxonium: single Cooper pair circuit free of charge offsets

    Full text link
    The promise of single Cooper pair quantum circuits based on tunnel junctions for metrology and quantum information applications is severely limited by the influence of "offset" charges - random, slowly drifting microscopic charges inherent to many solid-state systems. By shunting a small junction with the Josephson kinetic inductance of a series array of large capacitance tunnel junctions, thereby ensuring that all superconducting islands are connected to the circuit by at least one large junction, we have realized a new superconducting artificial atom which is totally insensitive to offset charges. Yet, its energy levels manifest the anharmonic structure associated with single Cooper pair effects, a useful component for solid state quantum computation.Comment: Introduction and title update
    corecore