6 research outputs found

    Threshold Effects And Perturbative Unification

    Full text link
    We discuss the effect of the renormalization procedure in the computation of the unification point for running coupling constants. We explore the effects of threshold--crossing on the β\beta--functions. We compute the running of the coupling constants of the Standard Model, between mZm_Z and MPM_P, using a mass dependent subtraction procedure, and then compare the results with MSˉ\bar{MS}, and with the θ\theta-- function approximation. We also do this for the Minimal Supersymmetric extension of the Standard Model. In the latter, the bounds on susy masses that one obtains by requiring perturbative unification are dependent, to some extent, on the procedure.Comment: 22 pages, REVTEX-2.1, 6 Post-Script figures are include

    Path-integral fermion-boson decoupling at finite temperature

    Get PDF
    We show how to extend the standard functional approach to bosonisation, based on a decoupling change of path-integral variables, to the case in which a finite temperature is considered. As examples, in order to both illustrate and check the procedure, we derive the thermodynamical partition functions for the Thirring and Schwinger models.Comment: 12 pages, latex, no figure

    Corner wetting in a far-from-equilibrium magnetic growth model

    Full text link
    The irreversible growth of magnetic films is studied in three-dimensional confined geometries of size L×L×ML\times L\times M, where MLM\gg L is the growing direction. Competing surface magnetic fields, applied to opposite corners of the growing system, lead to the observation of a localization-delocalization (weakly rounded) transition of the interface between domains of up and down spins on the planes transverse to the growing direction. This effective transition is the precursor of a true far-from-equilibrium corner wetting transition that takes place in the thermodynamic limit. The phenomenon is characterized quantitatively by drawing a magnetic field-temperature phase diagram, firstly for a confined sample of finite size, and then by extrapolating results, obtained with samples of different size, to the thermodynamic limit. The results of this work are a nonequilibrium realization of analogous phenomena recently investigated in equilibrium systems, such as corner wetting transitions in the Ising model.Comment: 14 pages, 8 figures. EPJ styl

    Self-dual Ginzburg-Landau vortices in a disk

    Get PDF
    We study the properties of the Ginzburg-Laundau model in the self-dual point for a two-dimensional finite system . By a numerical calculation we analyze the solutions of the Euler-Lagrange equations for a cylindrically symmetric ansatz. We also study the self-dual equations for this case. We find that the minimal energy configurations are not given by the Bogomol'nyi equations but by solutions to the Euler Lagrange ones. With a simple approximation scheme we reproduce the result of the numerical calculation.Comment: 8 pages, 4 figures, RevTex macro

    Multiflavor Correlation Functions in non-Abelian Gauge Theories at Finite Density in two dimensions

    Get PDF
    We compute vacuum expectation values of products of fermion bilinears for two-dimensional Quantum Chromodynamics at finite flavored fermion densities. We introduce the chemical potential as an external charge distribution within the path-integral approach and carefully analyse the contribution of different topological sectors to fermion correlators. We show the existence of chiral condensates exhibiting an oscillatory inhomogeneous behavior as a function of a chemical potential matrix. This result is exact and goes in the same direction as the behavior found in QCD_4 within the large N approximation.Comment: 28 pages Latex (3 pages added and other minor changes) to appear in Phys.Rev.

    Friedel oscillations in a Luttinger liquid with long-range interactions

    Get PDF
    We introduce a path-integral approach that allows to compute charge density oscillations in a Luttinger liquid with impurities. We obtain an explicit expression for the envelope of Friedel oscillations in the presence of arbitrary electron-electron potentials. As examples, in order to illustrate the procedure, we show how to use our formula for contact and Coulomb potentials.Comment: 11 pages, no figures, latex. Revised version to appear in PR
    corecore