6,754 research outputs found

    Spectral and Diffusive Properties of Silver-Mean Quasicrystals in 1,2, and 3 Dimensions

    Get PDF
    Spectral properties and anomalous diffusion in the silver-mean (octonacci) quasicrystals in d=1,2,3 are investigated using numerical simulations of the return probability C(t) and the width of the wave packet w(t) for various values of the hopping strength v. In all dimensions we find C(t)\sim t^{-\delta}, with results suggesting a crossover from \delta<1 to \delta=1 when v is varied in d=2,3, which is compatible with the change of the spectral measure from singular continuous to absolute continuous; and we find w(t)\sim t^{\beta} with 0<\beta(v)<1 corresponding to anomalous diffusion. Results strongly suggest that \beta(v) is independent of d. The scaling of the inverse participation ratio suggests that states remain delocalized even for very small hopping amplitude v. A study of the dynamics of initially localized wavepackets in large three-dimensional quasiperiodic structures furthermore reveals that wavepackets composed of eigenstates from an interval around the band edge diffuse faster than those composed of eigenstates from an interval of the band-center states: while the former diffuse anomalously, the latter appear to diffuse slower than any power law.Comment: 11 pages, 10 figures, 1 tabl

    An exact-diagonalization study of rare events in disordered conductors

    Full text link
    We determine the statistical properties of wave functions in disordered quantum systems by exact diagonalization of one-, two- and quasi-one dimensional tight-binding Hamiltonians. In the quasi-one dimensional case we find that the tails of the distribution of wave-function amplitudes are described by the non-linear sigma-model. In two dimensions, the tails of the distribution function are consistent with a recent prediction based on a direct optimal fluctuation method.Comment: 13 pages, 5 figure

    The Anderson model of localization: a challenge for modern eigenvalue methods

    Get PDF
    We present a comparative study of the application of modern eigenvalue algorithms to an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for the large, sparse, real, symmetric, and indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation of Cullum and Willoughby with the implicitly restarted Arnoldi method coupled with polynomial and several shift-and-invert convergence accelerators as well as with a sparse hybrid tridiagonalization method. We demonstrate that for our problem the Lanczos implementation is faster and more memory efficient than the other approaches. This seemingly innocuous problem presents a major challenge for all modern eigenvalue algorithms.Comment: 16 LaTeX pages with 3 figures include

    Two-color QCD with staggered fermions at finite temperature under the influence of a magnetic field

    Full text link
    In this paper we investigate the influence of a constant external magnetic field on the finite-temperature phase structure and the chiral properties of a simplified lattice model for QCD. We assume an SU(2) gauge symmetry and employ dynamical staggered fermions of identical mass without rooting, corresponding to Nf=4 flavors of identical electric charge. For fixed mass (given in lattice units) the critical temperature is seen to rise with the magnetic field strength. For three fixed beta-values, selected such that we stay (i) within the chirally broken phase, (ii) within the transition region or (iii) within the chirally restored phase, we study the approach to the chiral limit for various values of the magnetic field. Within the chirally broken (confinement) phase the chiral condensate is found to increase monotonically with a growing magnetic field strength. In the chiral limit the increase starts linear in agreement with a chiral model studied by Shushpanov and Smilga. Within the chirally restored (deconfinement) phase the chiral condensate tends to zero in the chiral limit, irrespective of the strength of the magnetic field.Comment: 15 pages, 12 figures; version accepted by Physical Review

    Branching Fraction Measurements of the SM Higgs with a Mass of 160 GeV at Future Linear \ee Colliders

    Get PDF
    Assuming an integrated luminosity of 500 fb1^{-1} and a center-of-mass energy of 350 GeV, we examine the prospects for measuring branching fractions of a Standard Model-like Higgs boson with a mass of 160 GeV at the future linear \ee collider TESLA when the Higgs is produced via the Higgsstrahlung mechanism, \ee \pfr HZ. We study in detail the precisions achievable for the branching fractions of the Higgs into WW^*, ZZ^* and \bb. However, the measurement of BF(H \pfr \gaga) remains a great challence. Combined with the expected error for the inclusive Higgsstrahlung production rate the uncertainty for the total width of the Higgs is estimated.Comment: 17 pages Latex, including 7 figure

    Localization of non-interacting electrons in thin layered disordered systems

    Full text link
    Localization of electronic states in disordered thin layered systems with b layers is studied within the Anderson model of localization using the transfer-matrix method and finite-size scaling of the inverse of the smallest Lyapunov exponent. The results support the one-parameter scaling hypothesis for disorder strengths W studied and b=1,...,6. The obtained results for the localization length are in good agreement with both the analytical results of the self-consistent theory of localization and the numerical scaling studies of the two-dimensional Anderson model. The localization length near the band center grows exponentially with b for fixed W but no localization-delocalization transition takes place.Comment: 6 pages, 5 figure

    Energy-efficient coding with discrete stochastic events

    Get PDF
    We investigate the energy efficiency of signaling mechanisms that transfer information by means of discrete stochastic events, such as the opening or closing of an ion channel. Using a simple model for the generation of graded electrical signals by sodium and potassium channels, we find optimum numbers of channels that maximize energy efficiency. The optima depend on several factors: the relative magnitudes of the signaling cost (current flow through channels), the fixed cost of maintaining the system, the reliability of the input, additional sources of noise, and the relative costs of upstream and downstream mechanisms. We also analyze how the statistics of input signals influence energy efficiency. We find that energy-efficient signal ensembles favor a bimodal distribution of channel activations and contain only a very small fraction of large inputs when energy is scarce. We conclude that when energy use is a significant constraint, trade-offs between information transfer and energy can strongly influence the number of signaling molecules and synapses used by neurons and the manner in which these mechanisms represent information
    corecore