1,353 research outputs found

    The Pechora river basin

    Get PDF

    Self-consistent approach for the quantum confined Stark effect in shallow quantum wells

    Full text link
    A computationally efficient, self-consistent complex scaling approach to calculating characteristics of excitons in an external electric field in quantum wells is introduced. The method allows one to extract the resonance position as well as the field-induced broadening for the exciton resonance. For the case of strong confinement the trial function is represented in factorized form. The corresponding coupled self-consistent equations, which include the effective complex potentials, are obtained. The method is applied to the shallow quantum well. It is shown that in this case the real part of the effective exciton potential is insensitive to changes of external electric field up to the ionization threshold, while the imaginary part has non-analytical field dependence and small for moderate electric fields. This allows one to express the exciton quasi-energy at some field through the renormalized expression for the zero-field bound state.Comment: 13 pages, RevTeX4, 6 figure

    Theoretical and methodological grounds for the modernization of the tax administration system

    Get PDF
    The article stands for the theoretical underpinning of economic grounds of tax system and its building on the basis of social- and business-oriented socioeconomic features. Authors proved the need for tax process management that represent the features of government-society-taxpayer relations with taxpayer’s leading role as macroeconomic tool for economic regulation process as well as providing the sustainable and balanced economic growth and innovative modernization of Russian economy.peer-reviewe

    Calculations of exchange interaction in impurity band of two-dimensional semiconductors with out of plane impurities

    Full text link
    We calculate the singlet-triplet splitting for a couple of two-dimensional electrons in the potential of two positively charged impurities which are located out of plane. We consider different relations between vertical distances of impurities h1h_1 and h2h_2 and their lateral distance RR. Such a system has never been studied in atomic physics but the methods, worked out for regular two-atomic molecules and helium atom, have been found to be useful. Analytical expressions for several different limiting configurations of impurities are obtained an interpolated formula for intermediate range of parameters is proposed. The RR-dependence of the splitting is shown to become weaker with increasing h1,h2h_1,h_2.Comment: 14 pages, RevTeX, 5 figures. Submitted to Phys Rev.

    Double giant resonances in deformed nuclei

    Full text link
    We report on the first microscopic study of the properties of two-phonon giant resonances in deformed nuclei. The cross sections of the excitation of the giant dipole and the double giant dipole resonances in relativistic heavy ion collisions are calculated. We predict that the double giant dipole resonance has a one-bump structure with a centroid 0.8 MeV higher than twice energy for the single giant dipole resonance in the reaction under consideration. The width of the double resonance equals to 1.33 of that for the single resonance.Comment: 5 pages, 2 postscript figure

    Q-phonon description of low lying 1^- two-phonon states in spherical nuclei

    Full text link
    The properties of 1^-_1 two-phonon states and the characteristics of E1 transition probabilities between low-lying collective states in spherical nuclei are analysed within the Q-phonon approach to the description of collective states. Several relations between observables are obtained. Microscopic calculations of the E1 0^+_1 -> 1^-_1 transition matrix elements are performed on the basis of the RPA. A satisfactory description of the experimental data is obtained.Comment: 16 pages, 2 figures, 9 table

    Optical models of the molecular atmosphere

    Get PDF
    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered
    corecore