129 research outputs found

    Evolution of Cooperative Networks and the Emergence of Leadership

    Get PDF
    A generic property of biological, social and economical networks is their ability to evolve in time, creating or supressing links. We model this situation with an adaptive network of agents playing a Prisoner's Dilemma game. Each agent plays with its local neighbors, collects an aggregate payoff and imitates the strategy of its best neighbor. Furthermore we allow the agents adapt their local neighborhood according to their satisfaction level and the strategy played. Therefore each agent will have diverse environments that induces an interesting dynamics in the cooperation fraction of the whole network. In the absence of noise, a steady state is always reached, where the strategies and the neighborhoods remain stationary, and where for a wide range of parameter values, an almost full cooperative outcome is obtained. The topology of the network in these states reveals that cooperators with a large number of connections emerges. These "leaders" are shown to be very important in understanding the global stability of the final steady state. If the "leaders" are perturbated, then global cascades arise and the system oscillates between the nearly full defection network and the fully cooperative outcome, before settling again in a nearly fully cooperative outcome.Cooperation -- Evolutionary Game Theory -- Stochastic Networks -- Prisoner Dilemma

    Divergent Time Scale in Axelrod Model Dynamics

    Get PDF
    We study the evolution of the Axelrod model for cultural diversity. We consider a simple version of the model in which each individual is characterized by two features, each of which can assume q possibilities. Within a mean-field description, we find a transition at a critical value q_c between an active state of diversity and a frozen state. For q just below q_c, the density of active links between interaction partners is non-monotonic in time and the asymptotic approach to the steady state is controlled by a time scale that diverges as (q-q_c)^{-1/2}.Comment: 4 pages, 5 figures, 2-column revtex4 forma

    Time scale competition leading to fragmentation and recombination transitions in the coevolution of network and states

    Get PDF
    We study the co-evolution of network structure and node states in a model of multiple state interacting agents. The system displays two transitions, network recombination and fragmentation, governed by time scales that emerge from the dynamics. The recombination transition separates a frozen configuration, composed by disconnected network components whose agents share the same state, from an active configuration, with a fraction of links that are continuously being rewired. The nature of this transition is explained analytically as the maximum of a characteristic time. The fragmentation transition, that appears between two absorbing frozen phases, is an anomalous order-disorder transition, governed by a crossover between the time scales that control the structure and state dynamics.Comment: 5 pages, 5 figures, figures 2 and 4 changed, tile changed, to be published in PR

    Information feedback and mass media effects in cultural dynamics

    Get PDF
    We study the effects of different forms of information feedback associated with mass media on an agent-agent based model of the dynamics of cultural dissemination. In addition to some processes previously considered, we also examine a model of local mass media influence in cultural dynamics. Two mechanisms of information feedback are investigated: (i) direct mass media influence, where local or global mass media act as an additional element in the network of interactions of each agent, and (ii) indirect mass media influence, where global media acts as a filter of the influence of the existing network of interactions of each agent. Our results generalize previous findings showing that cultural diversity builds-up by increasing the strength of the mass media influence. We find that this occurs independently of the mechanisms of action (direct or indirect) of the mass media message. However, through an analysis of the full range of parameters measuring cultural diversity, we establish that the enhancement of cultural diversity produced by interaction with mass media only occurs for strong enough mass media messages. In comparison with previous studies a main different result is that weak mass media messages, in combination with agent-agent interaction, are efficient in producing cultural homogeneity. Moreover, the homogenizing effect of weak mass media messages are more efficient for direct local mass media messages than for global mass media messages or indirect global mass media influences.Comment: 20n pages, 10 figure

    Clone size distributions in networks of genetic similarity

    Get PDF
    We build networks of genetic similarity in which the nodes are organisms sampled from biological populations. The procedure is illustrated by constructing networks from genetic data of a marine clonal plant. An important feature in the networks is the presence of clone subgraphs, i.e. sets of organisms with identical genotype forming clones. As a first step to understand the dynamics that has shaped these networks, we point up a relationship between a particular degree distribution and the clone size distribution in the populations. We construct a dynamical model for the population dynamics, focussing on the dynamics of the clones, and solve it for the required distributions. Scale free and exponentially decaying forms are obtained depending on parameter values, the first type being obtained when clonal growth is the dominant process. Average distributions are dominated by the power law behavior presented by the fastest replicating populations.Comment: 17 pages, 4 figures. One figure improved and other minor changes. To appear in Physica

    Importance of single nodes in dynamics on networks

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure

    Importance of single nodes in dynamics on networks

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure

    Evolutionary and Ecological Trees and Networks

    Get PDF
    Evolutionary relationships between species are usually represented in phylogenies, i.e. evolutionary trees, which are a type of networks. The terminal nodes of these trees represent species, which are made of individuals and populations among which gene flow occurs. This flow can also be represented as a network. In this paper we briefly show some properties of these complex networks of evolutionary and ecological relationships. First, we characterize large scale evolutionary relationships in the Tree of Life by a degree distribution. Second, we represent genetic relationships between individuals of a Mediterranean marine plant, Posidonia oceanica, in terms of a Minimum Spanning Tree. Finally, relationships among plant shoots inside populations are represented as networks of genetic similarity.Comment: 6 pages, 5 figures. To appear in Proceedings of the Medyfinol06 Conferenc

    Network analysis identifies weak and strong links in a metapopulation system

    Get PDF
    The identification of key populations shaping the structure and connectivity of metapopulation systems is a major challenge in population ecology. The use of molecular markers in the theoretical framework of population genetics has allowed great advances in this field, but the prime question of quantifying the role of each population in the system remains unresolved. Furthermore, the use and interpretation of classical methods are still bounded by the need for a priori information and underlying assumptions that are seldom respected in natural systems. Network theory was applied to map the genetic structure in a metapopulation system by using microsatellite data from populations of a threatened seagrass, Posidonia oceanica, across its whole geographical range. The network approach, free from a priori assumptions and from the usual underlying hypotheses required for the interpretation of classical analyses, allows both the straightforward characterization of hierarchical population structure and the detection of populations acting as hubs critical for relaying gene flow or sustaining the metapopulation system. This development opens perspectives in ecology and evolution in general, particularly in areas such as conservation biology and epidemiology, where targeting specific populations is crucial
    corecore