814 research outputs found

    A Dynamical Theory of Electron Transfer: Crossover from Weak to Strong Electronic Coupling

    Full text link
    We present a real-time path integral theory for the rate of electron transfer reactions. Using graph theoretic techniques, the dynamics is expressed in a formally exact way as a set of integral equations. With a simple approximation for the self-energy, the rate can then be computed analytically to all orders in the electronic coupling matrix element. We present results for the crossover region between weak (nonadiabatic) and strong (adiabatic) electronic coupling and show that this theory provides a rigorous justification for the salient features of the rate expected within conventional electron transfer theory. Nonetheless, we find distinct characteristics of quantum behavior even in the strongly adiabatic limit where classical rate theory is conventionally thought to be applicable. To our knowledge, this theory is the first systematic dynamical treatment of the full crossover region.Comment: 11 pages, LaTeX, 8 Postscript figures to be published in J. Chem. Phy

    Distribution of Interacting Ionic Particles in Disordered Media

    Full text link
    Equilibrium distribution of interacting ionic particles in a charged disordered background is studied using the nonlinear Poisson-Boltzmann equation. For an arbitrarily given realization of the disorder, an exact solution of the equation is obtained in one dimension using a mapping of the nonlinear Poisson-Boltzmann equation to a self-consistent Schrodinger equation. The resulting density profile shows that the ions are delocalized, despite what the equivalent Schrodinger formulation in one dimension would suggest. It is shown that the ions are not distributed so as to locally neutralize the background, presumably due to their mutual interactions

    Large Scale Structures a Gradient Lines: the case of the Trkal Flow

    Full text link
    A specific asymptotic expansion at large Reynolds numbers (R)for the long wavelength perturbation of a non stationary anisotropic helical solution of the force less Navier-Stokes equations (Trkal solutions) is effectively constructed of the Beltrami type terms through multi scaling analysis. The asymptotic procedure is proved to be valid for one specific value of the scaling parameter,namely for the square root of the Reynolds number (R).As a result large scale structures arise as gradient lines of the energy determined by the initial conditions for two anisotropic Beltrami flows of the same helicity.The same intitial conditions determine the boundaries of the vortex-velocity tubes, containing both streamlines and vortex linesComment: 27 pages, 2 figure

    Direct optical observations of surface thermal motions at sub-shot noise levels

    Full text link
    We measure spectral properties of surface thermal fluctuations of liquids, solids, complex fluids and biological matter using light scattering methods. The random thermal fluctuations are delineated from random noise at sub-shot noise levels. The principle behind this extraction, which is quite general and is not limited to surface measurements, is explained. An optical lever is used to measure the spectrum of fluctuations in the inclinations of surfaces down to ∼10−17rad2/Hz\sim 10^{-17}\rm rad^2/Hz at 1∼10μ1\sim10 \muW optical intensity, corresponding to ∼10−29m2/Hz\sim 10^{-29} \rm m^2/\rm Hz in the vertical displacement, in the frequency range 1kHz∼10MHz1{\rm}\rm kHz\sim10 MHz. The dynamical evolution of the surface properties is also investigated. The measurement requires only a short amount of time and is essentially passive, so that it can be applied to a wide variety of surfaces.Comment: 5pp, 5 figure

    Spectral properties of thermal fluctuations on simple liquid surfaces below shot noise levels

    Full text link
    We study the spectral properties of thermal fluctuations on simple liquid surfaces, sometimes called ripplons. Analytical properties of the spectral function are investigated and are shown to be composed of regions with simple analytic behavior with respect to the frequency or the wave number. The derived expressions are compared to spectral measurements performed orders of magnitude below shot noise levels, which is achieved using a novel noise reduction method. The agreement between the theory of thermal surface fluctuations and the experiment is found to be excellent.Comment: 9 pages, 5 figure

    Cerebroprotective activity of 3-benzylxanthine derivative – compound Ale-15, in conditions of bilateral common carotid arteries ligation (ischemic stroke)

    Get PDF
    Background: Acute ischemic stroke is a leading cause of mortality, morbidity, long-term disability in industrialized countries. One of main parts of it pathogenesis is production of reactive oxygen species. The accumulation of them in neurons results in lipid peroxidation, protein oxidation, DNA damage, and finally cell death. Thereby the search of novel drugs, that have antioxidant action and can be used to complex treatment of cerebral strokes is reasonable. It is known, that xanthine derivatives exhibit a broad spectrum of biological activity, including antioxidant. So that, the goal of this research was to study in vivo neuroprotective action of water-soluble derivative of 3-benzylxanthine – morpholin-4-ium 3-benzylxanthinyl-8-methylthioacetate (Ale-15 compound) in comparison with neuroprotector-antioxidant – Mexidol.Methods: Experimental part was done on white Wistar rats of both sexes of 220-260 g weight. For assessment of neuroprotective action of compound we used a model of global incomplete cerebral ischemia, that was reproduced by bilateral common carotid arteries ligation.Results: It was studied an acute toxicity of Ale-15 compound, it influence on survival of laboratory animals, on progression of neuralgic deficit, on the content of adenylic nucleotides, on criteria of energy metabolism, on the activity of antioxidant enzymes and on oxidative modification of protein. Results of study showed, that injection of Ale-15 compound to animals with ischemic stroke intragastrically during 4 days positively reduced death rate and quantity of animals with serious neurologic symptoms. The main parts of Ale-15 cerebroprotective mechanism are antioxidant and anti-ischemic actions.Conclusions: The performed study revealed significant cerebroprotective features of Ale-15 compound in conditions of experimental cerebrovascular accident

    Anomalous temperature dependence of surface tension and capillary waves at liquid gallium

    Full text link
    The temperature dependence of surface tension \gamma(T) at liquid gallium is studied theoretically and experimentally using light scattering from capillary waves. The theoretical model based on the Gibbs thermodynamics relates the temperature derivative of \gamma to the surface excess entropy -\Delta S. Although capillary waves contribute to the surface entropy with a positive sign the effect of dipole layer on \Delta S is negative. Experimental data collected at a free Ga surface in the temperature range from 30 to 160 C show that the temperature derivative of the tension changes sign near 100 C.Comment: 11 pages, 1 Postscript figure, submitted to J. Phys.

    Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes

    Full text link
    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) In the "super-capacitor regime" of small voltages and/or early times where the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore. (ii) In the "desalination regime" of large voltages and long times, the porous electrode slowly adsorbs neutral salt, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration

    Forces on a boiling bubble in a developing boundary layer, in microgravity with g-jitter and in terrestrial conditions

    Get PDF
    Terrestrial and microgravity flow boiling experiments were carried out with the same test rig, comprising a locally heated artificial cavity in the center of a channel near the frontal edge of an intrusive glass bubble generator. Bubble shapes were in microgravity generally not far from those of truncated spheres,which permitted the computation of inertial lift and drag from potential flow theory for truncated spheres approximating the actual shape. For these bubbles, inertial lift is counteracted by drag and both forces are of the same order of magnitude as g-jitter. A generalization of the Laplace equation is found which applies to a deforming bubble attached to a plane wall and yields the pressure difference between the hydrostatic pressures in the bubble and at the wall, p. A fully independent way to determine the overpressure p is given by a second Euler-Lagrange equation. Relative differences have been found to be about 5% for both terrestrial and microgravity bubbles. A way is found to determine the sum of the two counteracting major force contributions on a bubble in the direction normal to the wall from a single directly measurable quantity. Good agreement with expectation values for terrestrial bubbles was obtained with the difference in radii of curvature averaged over the liquid-vapor interface, (1/R2 − 1/R1), multiplied with the surface tension coefficient, σ. The new analysis methods of force components presented also permit the accounting for a surface tension gradient along the liquid-vapor interface. No such gradients were found for the present measurements

    Dynamics of Counterion Condensation

    Full text link
    Using a generalization of the Poisson-Boltzmann equation, dynamics of counterion condensation is studied. For a single charged plate in the presence of counterions, it is shown that the approach to equilibrium is diffusive. In the far from equilibrium case of a moving charged plate, a dynamical counterion condensation transition occurs at a critical velocity. The complex dynamic behavior of the counterion cloud is shown to lead to a novel nonlinear force-velocity relation for the moving plate.Comment: 5 pages, 1 ps figure included using eps
    • …
    corecore