78 research outputs found

    Constraints on non-Newtonian gravity and axionlike particles from measuring the Casimir force in nanometer separation range

    Full text link
    We obtain constraints on the Yukawa-type corrections to Newton's gravitational law and on the coupling constant of axionlike particles to nucleons following from the experiment on measuring the Casimir force between an Au-coated microsphere and a silicon carbide plate. For this purpose, both the Yukawa-type force and the force due to two-axion exchange between nucleons are calculated in the experimental configuration. In the interaction range of Yukawa force exceeding 1 nm and for axion masses above 17.8 eV, the obtained constraints are much stronger than those found previously from measuring the lateral Casimir force between sinusoidally corrugated surfaces. These results are compared with the results of other laboratory experiments on constraining non-Newtonian gravity and axionlike particles in the relevant interaction ranges.Comment: 16 pages, 2 figures; accepted for publication in Phys. Rev.

    Scalar-tensor cosmology at the general relativity limit: Jordan vs Einstein frame

    Full text link
    We consider the correspondence between the Jordan frame and the Einstein frame descriptions of scalar-tensor theory of gravitation. We argue that since the redefinition of the scalar field is not differentiable at the limit of general relativity the correspondence between the two frames is lost at this limit. To clarify the situation we analyse the dynamics of the scalar field in different frames for two distinct scalar-tensor cosmologies with specific coupling functions and demonstrate that the corresponding scalar field phase portraits are not equivalent for regions containing the general relativity limit. Therefore the answer to the question whether general relativity is an attractor for the theory depends on the choice of the frame.Comment: 16 pages, 8 figures, version appeared in PR

    Scalar-tensor cosmologies: fixed points of the Jordan frame scalar field

    Full text link
    We study the evolution of homogeneous and isotropic, flat cosmological models within the general scalar-tensor theory of gravity with arbitrary coupling function and potential. After introducing the limit of general relativity we describe the details of the phase space geometry. Using the methods of dynamical systems for the decoupled equation of the Jordan frame scalar field we find the fixed points of flows in two cases: potential domination and matter domination. We present the conditions on the mathematical form of the coupling function and potential which determine the nature of the fixed points (attractor or other). There are two types of fixed points, both are characterized by cosmological evolution mimicking general relativity, but only one of the types is compatible with the Solar System PPN constraints. The phase space structure should also carry over to the Einstein frame as long as the transformation between the frames is regular which however is not the case for the latter (PPN compatible) fixed point.Comment: 21 pages, 4 figures, some comments and references adde

    Fiducial Reference Measurements for Satellite Ocean Colour (FRM4SOC)

    Get PDF
    Earth observation data can help us understand and address some of the grand challenges and threats facing us today as a species and as a planet, for example climate change and its impacts and sustainable use of the Earth’s resources. However, in order to have confidence in earth observation data, measurements made at the surface of the Earth, with the intention of providing verification or validation of satellite-mounted sensor measurements, should be trustworthy and at least of the same high quality as those taken with the satellite sensors themselves. Metrology tells us that in order to be trustworthy, measurements should include an unbroken chain of SI-traceable calibrations and comparisons and full uncertainty budgets for each of the in situ sensors. Until now, this has not been the case for most satellite validation measurements. Therefore, within this context, the European Space Agency (ESA) funded a series of Fiducial Reference Measurements (FRM) projects targeting the validation of satellite data products of the atmosphere, land, and ocean, and setting the framework, standards, and protocols for future satellite validation efforts. The FRM4SOC project was structured to provide this support for evaluating and improving the state of the art in ocean colour radiometry (OCR) and satellite ocean colour validation through a series of comparisons under the auspices of the Committee on Earth Observation Satellites (CEOS). This followed the recommendations from the International Ocean Colour Coordinating Group’s white paper and supports the CEOS ocean colour virtual constellation. The main objective was to establish and maintain SI traceable ground-based FRM for satellite ocean colour and thus make a fundamental contribution to the European system for monitoring the Earth (Copernicus). This paper outlines the FRM4SOC project structure, objectives and methodology and highlights the main results and achievements of the project: (1) An international SI-traceable comparison of irradiance and radiance sources used for OCR calibration that set measurement, calibration and uncertainty estimation protocols and indicated good agreement between the participating calibration laboratories from around the world; (2) An international SI-traceable laboratory and outdoor comparison of radiometers used for satellite ocean colour validation that set OCR calibration and comparison protocols; (3) A major review and update to the protocols for taking irradiance and radiance field measurements for satellite ocean colour validation, with particular focus on aspects of data acquisition and processing that must be considered in the estimation of measurement uncertainty and guidelines for good practice; (4) A technical comparison of the main radiometers used globally for satellite ocean colour validation bringing radiometer manufacturers together around the same table for the first time to discuss instrument characterisation and its documentation, as needed for measurement uncertainty estimation; (5) Two major international side-by-side field intercomparisons of multiple ocean colour radiometers, one on the Atlantic Meridional Transect (AMT) oceanographic cruise, and the other on the Acqua Alta oceanographic tower in the Gulf of Venice; (6) Impact and promotion of FRM within the ocean colour community, including a scientific road map for the FRM-based future of satellite ocean colour validation and vicarious calibration (based on the findings of the FRM4SOC project, the consensus from two major international FRM4SOC workshops and previous literature, including the IOCCG white paper on in situ ocean colour radiometry)

    Field Intercomparison of Radiometer Measurements for Ocean Colour Validation

    Get PDF
    A field intercomparison was conducted at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea, from 9 to 19 July 2018 to assess differences in the accuracy of in- and above-water radiometer measurements used for the validation of ocean colour products. Ten measurement systems were compared. Prior to the intercomparison, the absolute radiometric calibration of all sensors was carried out using the same standards and methods at the same reference laboratory. Measurements were performed under clear sky conditions, relatively low sun zenith angles, moderately low sea state and on the same deployment platform and frame (except in-water systems). The weighted average of five above-water measurements was used as baseline reference for comparisons. For downwelling irradiance (), there was generally good agreement between sensors with differences of <6% for most of the sensors over the spectral range 400 nm–665 nm. One sensor exhibited a systematic bias, of up to 11%, due to poor cosine response. For sky radiance () the spectrally averaged difference between optical systems was <2.5% with a root mean square error (RMS) <0.01 mWm−2 nm−1 sr−1. For total above-water upwelling radiance (), the difference was <3.5% with an RMS <0.009 mWm−2 nm−1 sr−1. For remote-sensing reflectance (), the differences between above-water TriOS RAMSES were <3.5% and <2.5% at 443 and 560 nm, respectively, and were <7.5% for some systems at 665 nm. Seabird HyperSAS sensors were on average within 3.5% at 443 nm, 1% at 560 nm, and 3% at 665 nm. The differences between the weighted mean of the above-water and in-water systems was <15.8% across visible bands. A sensitivity analysis showed that accounted for the largest fraction of the variance in , which suggests that minimizing the errors arising from this measurement is the most important variable in reducing the inter-group differences in . The differences may also be due, in part, to using five of the above-water systems as a reference. To avoid this, in situ normalized water-leaving radiance () was therefore compared to AERONET-OC SeaPRiSM as an alternative reference measurement. For the TriOS-RAMSES and Seabird-Hyperspectral Surface Acquisition System (HyperSAS) sensors the differences were similar across the visible spectra with 4.7% and 4.9%, respectively. The difference between SeaPRiSM and two in-water systems at blue, green and red bands was 11.8%. This was partly due to temporal and spatial differences in sampling between the in-water and above-water systems and possibly due to uncertainties in instrument self-shading for one of the in-water measurements

    Complete characterization of ocean color radiometers

    Get PDF
    Verifying and validating waterleaving radiance measurements from space for an accurate derivation of Ocean/Water Colour biogeophysical products is based on concurrent high-quality fiducial reference measurements (FRM) carried out on the ground or water body. The FRM principles established by the Committee on Earth Observation Satellites (CEOS) recommend that in situ Ocean Colour radiometers (OCR) have a documented history of SI traceable calibrations including uncertainty budgets. Furthermore, there can be significant differences between calibration and use of the instruments in the field due to differences in operating temperature, angular variation of the light field (especially for irradiance sensors), the intensity of the measured radiation, and spectral variation of the target, among others. Each of these factors may interact with individual properties of the instrument when deployed in the field, and estimation of such uncertainties requires instrument characterization in addition to the absolute radiometric calibration if expanded uncertainties within ±10% (k = 2) are the aim. The FRM4SOC Phase 2 project - funded by the European Commission in the frame of the Copernicus Programme and implemented by EUMETSAT - contributes to these efforts, aiming at developing an operational and sustained network of radiometric measurements of FRM quality. Within FRM4SOC-2, scientists from the Tartu Observatory (TO) of the University of Tartu performed an unprecedented batch of calibrations and characterizations on a set of 37 hyperspectral field radiometers representative of the most used OCR classes within the OC community. The calibrations and characterizations performed include the determination of radiometric responsivity, long-term stability, the accuracy of the spectral scale, non-linearity and accuracy of integration times, spectral stray light, angular response of irradiance sensors in air, dark signal, thermal sensitivity, polarization sensitivity, and signal-to-noise ratio of individual OCRs. Consistent correction of biases and extended uncertainty analysis procedures of in situ data obtained from different instruments and measurement models need to be clearly defined, which is the objective of this paper

    Innovation, low energy buildings and intermediaries in Europe: systematic case study review

    Get PDF
    As buildings throughout their lifecycle account for circa 40% of total energy use in Europe, reducing energy use of the building stock is a key task. This task is, however, complicated by a range of factors, including slow renewal and renovation rates of buildings, multiple non- coordinated actors, conservative building practices, and limited competence to innovate. Drawing from academic literature published during 2005-2015, this article carries out a systematic review of case studies on low energy innovations in the European residential building sector, analysing their drivers. Specific attention is paid to intermediary actors in facilitating innovation processes and creating new opportunities. The study finds that qualitative case study literature on low energy building innovation has been limited, particularly regarding the existing building stock. Environmental concerns, EU, national and local policies have been the key drivers; financial, knowledge and social sustainability and equity drivers have been of modest importance; while design, health and comfort, and market drivers have played a minor role. Intermediary organisations and individuals have been important through five processes: (1) facilitating individual building projects, (2) creating niche markets, (3) implementing new practices in social housing stock, (4) supporting new business model creation, and (5) facilitating building use post construction. The intermediaries have included both public and private actors, while local authority agents have acted as intermediaries in several cases

    Field Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range

    Get PDF
    An intercomparison of radiance and irradiance ocean color radiometers (the second laboratory comparison exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: (1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; (2) indoor, laboratory intercomparison using stable radiance and irradiance sources in a controlled environment; (3) outdoor, field intercomparison of natural radiation sources over a natural water surface. The aim of the experiment was to provide a link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether different instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the third phase of LCE-2: The results of the field experiment. The calibration of radiometers and laboratory comparison experiment are presented in a related paper of the same journal issue. Compared to the laboratory comparison, the field intercomparison has demonstrated substantially larger variability between freshly calibrated sensors, because the targets and environmental conditions during radiometric calibration were different, both spectrally and spatially. Major differences were found for radiance sensors measuring a sunlit water target at viewing zenith angle of 139° because of the different fields of view. Major differences were found for irradiance sensors because of imperfect cosine response of diffusers. Variability between individual radiometers did depend significantly also on the type of the sensor and on the specific measurement target. Uniform SI traceable radiometric calibration ensuring fairly good consistency for indoor, laboratory measurements is insufficient for outdoor, field measurements, mainly due to the different angular variability of illumination. More stringent specifications and individual testing of radiometers for all relevant systematic effects (temperature, nonlinearity, spectral stray light, etc.) are needed to reduce biases between instruments and better quantify measurement uncertainties

    Laboratory Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range

    Get PDF
    An intercomparison of radiance and irradiance ocean color radiometers (The Second Laboratory Comparison Exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: 1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; 2) Indoor intercomparison using stable radiance and irradiance sources in controlled environment; and 3) Outdoor intercomparison of natural radiation sources over terrestrial water surface. The aim of the experiment was to provide one link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether different instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the activities and results of the first two phases of LCE-2: the SI-traceable radiometric calibration and indoor intercomparison, the results of outdoor experiment are presented in a related paper of the same journal issue. The indoor experiment of the LCE-2 has proven that uniform calibration just before the use of radiometers is highly effective. Distinct radiometers from different manufacturers operated by different scientists can yield quite close radiance and irradiance results (standard deviation s < 1%) under defined conditions. This holds when measuring stable lamp-based targets under stationary laboratory conditions with all the radiometers uniformly calibrated against the same standards just prior to the experiment. In addition, some unification of measurement and data processing must be settled. Uncertainty of radiance and irradiance measurement under these conditions largely consists of the sensor’s calibration uncertainty and of the spread of results obtained by individual sensors measuring the same object

    Identification and Functional Analysis of Light-Responsive Unique Genes and Gene Family Members in Rice

    Get PDF
    Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families
    • …
    corecore