2,256 research outputs found

    Persistent Currents in Helical Structures

    Get PDF
    Recent discovery of mesoscopic electronic structures, in particular the carbon nanotubes, made necessary an investigation of what effect may helical symmetry of the conductor (metal or semiconductor) have on the persistent current oscillations. We investigate persistent currents in helical structures which are non-decaying in time, not requiring a voltage bias, dissipationless stationary flow of electrons in a normal-metallic or semiconducting cylinder or circular wire of mesoscopic dimension. In the presence of magnetic flux along the toroidal structure, helical symmetry couples circular and longitudinal currents to each other. Our calculations suggest that circular persistent currents in these structures have two components with periods Φ0\Phi_0 and Φ0/s\Phi_0/s (ss is an integer specific to any geometry). However, resultant circular persistent current oscillations have Φ0\Phi_0 period. \pacs{PACS:}PACS:73.23.-bComment: 4 pages, 2 figures. Submitted to PR

    Fiske Steps and Abrikosov Vortices in Josephson Tunnel Junctions

    Full text link
    We present a theoretical and experimental study of the Fiske resonances in the current-voltage characteristics of "small" Josephson junctions with randomly distributed misaligned Abrikosov vortices. We obtained that in the presence of Abrikosov vortices the resonant interaction of electromagnetic waves, excited inside a junction, with the ac Josephson current manifests itself by Fiske steps in a current-voltage characteristics even in the absence of external magnetic field. We found that the voltage positions of the Fiske steps are determined by a junction size, but the Fiske step magnitudes depend both on the density of trapped Abrikosov vortices and on their misalignment parameter. We measured the magnetic field dependence of both the amplitude of the first Fiske step and the Josephson critical current of low-dissipative small NbNb based Josephson tunnel junctions with artificially introduced Abrikosov vortices. A strong decay of the Josephson critical current and a weak non-monotonic decrease of the first Fiske step amplitude on the Abrikosov vortex density were observed. The experimentally observed dependencies are well described by the developed theory.Comment: 21 pages, 7 figures, submitted to Physical Review

    Quantum phase slips in the presence of finite-range disorder

    Get PDF
    To study the effect of disorder on quantum phase slips (QPS) in superconducting wires, we consider the plasmon-only model where disorder can be incorporated into a first-principles instanton calculation. We consider weak but general finite-range disorder and compute the formfactor in the QPS rate associated with momentum transfer. We find that the system maps onto dissipative quantum mechanics, with the dissipative coefficient controlled by the wave (plasmon) impedance Z of the wire and with a superconductor-insulator transition at Z=6.5 kOhm. We speculate that the system will remain in this universality class after resistive effects at the QPS core are taken into account.Comment: 4 pages, as accepted at Phys. Rev. Letter

    Magnetic field of Josephson vortices outside superconductors

    Full text link
    We consider the structure of Josephson vortices approaching the junction boundary with vacuum in large area Josephson junctions with the Josephson length λJ\lambda_J large relative to the London penetration depth λL\lambda_L. Using the stability argument for one-dimentional solitons with respect to 2D perturbations, it is shown that on the scale λJ\lambda_J the Josephson vortices do not spread near the boundary in the direction of the junction. %, which is in a striking difference with behavior of Abrikosov vortices exiting superconductors. The field distribution in vacuum due to the Josephson vortex is evaluated, the information needed for the Scanning SQUID Microscopy.Comment: 5 RevTeX pages, 3 eps figures. The second version includes more detailed explanations and corrections, and slightly modified figure
    corecore