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To study the effect of disorder on quantum phase slips (QPSs) in superconducting wires, we consider
the plasmon-only model where disorder can be incorporated into a first-principles instanton calculation.
We consider weak but general finite-range disorder and compute the form factor in the QPS rate associated
with momentum transfer. We find that the system maps onto dissipative quantum mechanics, with the
dissipative coefficient controlled by the wave (plasmon) impedance Z of the wire and with a
superconductor-insulator transition at Z � 6:5 k�. We speculate that the system will remain in this
universality class after resistive effects at the QPS core are taken into account.
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The possibility that quantum fluctuations destroy super-
conductivity in thin wires has attracted the attention of both
experimentalists and theorists for a long time. Similarly to
Little’s analysis of thermal fluctuations [1], one concludes
that the requisite quantum fluctuation should be suffi-
ciently large, so as to allow the Ginzburg-Landau (GL)
order parameter  GL to vanish at the core, and the phase of
 GL to unwind. Such fluctuations are known as quantum
phase slips (QPSs) [2]. On the experimental side, there has
been a bit of controversy over precisely how superconduc-
tivity disappears in thin wires at low temperatures. Some
experiments see a sharp superconducting-insulator transi-
tion (SIT) [3], while others do not [4].

Superconductivity takes place when it is difficult to
transfer momentum from the moving condensate. In one
dimension, a QPS unwinds a large momentum P� �ns,
where ns is the linear superconducting electron density,
and this momentum has to go somewhere. In uniform
superfluids (such as a cold Bose gas in a ring trap), the
requirement of momentum transfer constitutes a major
bottleneck for QPSs [5]. In superconducting wires, on the
other hand, there are some easily identifiable sinks of
momentum. The most obvious, and as far as we know
the only one that has been considered in the literature, is
the normal electrons at the QPS core, which in turn transfer
momentum to the disorder potential. It appears that in the
existing theory of QPSs in wires [6] this process is assumed
to be 100% effective, so that no trace of momentum
conservation is left in the QPS rate. One should keep in
mind, though, that this result is obtained using instantons
of a disorder-averaged theory.

In this work, we analyze effects of suppressed momen-
tum transfer explicitly, within a simple model where the
QPS rate can be found from a first-principles instanton
calculation—by first obtaining the rate for a given disorder
configuration and then averaging over disorder. We con-
sider the general case of weak but finite-range disorder.
Our essential simplifying assumption is that electrons in
the core are not effective in transferring momentum to the
lattice, so that the transfer takes place via the gapless

plasmon mode [7]. In this limit (applicability of which is
further discussed below), the rate can be computed within a
plasmon-only effective theory [Eq. (1)].

Under these assumptions we find that the transition point
is determined by the wave (plasmon) impedance of the
wire Z. We find that the system is in the universality class
of the dissipative quantum mechanics [8] (as opposed to
the XY universality class found in Ref. [6]) and identify a
SIT at Z � �=2e2 � 6:5 k�. The Ohmic resistivity of the
wire at the SIT, for weak disorder (the only case considered
here), is small (much smaller than the normal-state resis-
tivity) and has a nonuniversal value that depends on both
the strength and the correlation length of disorder.

These results apply in the limit when the normal resist-
ance Rcore of the QPS core is effectively infinite. The effect
of a finite Rcore can be understood as follows. Plasmons
produced by a QPS can be viewed as charge fluctuations in
equivalent transmission lines, one such line on each side of
the QPS core. A finite Rcore will shunt the charge separation
at the QPS core, thereby reducing the plasmon emission.
This picture of two transmission lines shunted by Rcore sug-
gests that the universality class will remain the same even
when dissipation is caused mostly by a finite Rcore (which
may very well be the case for existing experimental
samples). The SIT will now be controlled by the total impe-
dance formed by Z and Rcore connected in parallel and thus
occur across a straight line in the �1=Z; 1=Rcore� plane.

Our results rely on a certain amount of impedance
matching at the wire’s ends. We assume that plasmons
can leave the wire and go into the leads. This inhibits
quantization of plasmon modes and translates, technically,
into the possibility to consider the temperature T and the
wire length Lw as independent infrared parameters. In the
limit of short-range disorder, our results can be compared
to those obtained by the Luttinger-liquid methods in
Ref. [9] and reproduced in the instanton approach in
Ref. [10]. Because we use the scaling T ! 0 with Lw fixed
(as opposed to T / L�1

w used by those authors), we obtain a
different value of the critical coupling. On the other hand,
our value of the critical coupling coincides with that ob-
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tained in the model where an effective resistor is connected
to the wire’s ends [11], provided we substitute Z for the
resistance.

We start with the purely bosonic Euclidean Lagrangian
density

LE �  y@� �
1

2M
j@x j2 �

g
2
j j4 � ��� V�j j2; (1)

essentially the 1D Gross-Pitaevskii model in the presence
of the disorder potential V � V�x�. The field  is the ‘‘field
of Cooper pairs’’ describing fluctuations of superconduct-
ing density and phase. Thus, 4h y im�=M � ns (m� is the
effective electron mass) is the density of superconducting
electrons, while the coupling constant in Eq. (1) is g �
4e2=C, whereC is the wire capacitance per unit length. The
effective theory (1) holds only at spatial scales larger than
the size of a Cooper pair, i.e., the GL coherence length �.
Thus, the potential V�x� is coarse grained at the scale � in
the x direction and at the scale of the wire thickness in the
transverse directions.

We assume the disorder to be Gaussian with the corre-
lators hVi � 0, hV�x�V�x0�i � V2

0f�x� x
0�. The correla-

tion function f�x� is normalized so that f�0� � 1, and V0

is the rms disorder amplitude. The disorder correlation
length is l, meaning that for x * l, f�x� ! 0.

A major role in determining the QPS rate is played by
interactions between QPSs at different locations. These
interactions are determined by regions outside the QPS
cores and can be accounted for in a phase-only model.
We define  � ��� ���1=2ei� and, assuming weak disor-
der, expand Eq. (1) in powers of the small density fluctua-
tion �� around the stationary point with a given phase
gradient �0 � ��0. This phase gradient takes into account the
biasing current I � 2e ��0�=M. At the classical level the
stationary point is characterized by the local minimum � �
�� of the effective potential

U��� �
g
2
�2 ����

MI2

8e2�
: (2)

The minimum exists below the critical current, I < Ic,
where 3	MI2

cg2=�4e2�
1=3 � 2�.
Integrating out the density fluctuations ��, we obtain the

Euclidean Lagrangian density for the phase fluctuations
�1 � �� ��, describing gapless plasmons [7] propagating
with speed c0 � ���g=M�1=2 on the background moving
with superfluid velocity u � I=�2e���:

LE � i�� _�1 �
1

2
D��1K̂

�1D��1 �
��
2M
��01 � ��0�2; (3)

where D��1 � _�1 � iu�01 � iV is the covariant time de-
rivative in the moving reference frame and K̂ �
g�1� r2

sr
2� is the differential operator with the screening

length rs � �4M��g�
�1=2. For realistic values of the pa-

rameters, this screening length is much smaller than the GL
coherence length �. Our starting point (1) is already coarse
grained at scale �; in what follows, we set K̂ � g.

We can now find the exponential factor in the QPS rate
by computing the action of a suitable classical configura-
tion. We begin with the case of strictly zero temperature,
T � 0. The leading effect is due to a single phase-slip–
antislip pair, or equivalently a vortex-antivortex pair in the
�x; �� plane. Away from the vortex cores,

e2i�1 �
x� x0 � iv���� �0�

x� x0 � iv���� �0�

x� x00 � iv���� �
0
0�

x� x00 � iv���� �
0
0�
;

(4)

where v� � c0 � u are the up- (down-)stream velocities.
For u � 0 (i.e., v� � v�), this is the configuration famil-
iar from the studies of the planar XY model [12].

Integrating the Euclidean Lagrangian density (3) with
the configuration (4) over x and �, we obtain the corre-
sponding classical action

SE � S1 � S2 � Sdis; (5)

where the combination of uniform linear in �1 terms,

S1 � iP�x0 � E��0; (6)

with �x0 � x0 � x
0
0, ��0 � �0 � �

0
0, accounts for the

Berry phase of each QPS [P � 2��� is the momentum
released by unwinding the supercurrent] and the released
energy E � 2���u � 2�I=�2e�,

S2 �
�c0

g
ln
�
��x0 � iv���0���x0 � iv���0�

r2
C

�
(7)

is the plasmon-mediated interaction between the phase
slips coming from the terms quadratic in �1, and

Sdis � �
2�i

g�1� u2=c2
0�

Z x0

x00

dxV�x� (8)

is the effect of the disorder. In Eq. (7), we have used the
QPS core size rC (which is not determined by the present
theory) as the short-distance cutoff.

These expressions illustrate the effect of the superfluid
velocity u on the QPS action and can be useful, for in-
stance, in weakly nonideal Bose gases, where u may in
principle approach c0. Thus, for example, factor �1�
u2=c2

0�
�1 � �v�1

� � v
�1
� �c0=2 in Eq. (8) arises because

the up- (down-)stream plasmons spend longer (shorter)
time at the place with the given density. In thin super-
conductors, however, we typically have u� vF & c0. In
the following, we neglect u=c0 � 1, to get

SE � S1 �
2�c0

g
ln

�r0

rC
�

2�i
g

Z x0

x00

dxV�x�; (9)

where �r0 � ��x
2
0 � c

2
0��2

0�
1=2. We observe that the last

term here can be interpreted as the modification of S1 due
to the local correction to the density ����x� � �V�x�=g
caused by disorder. We will assume that V�x� incorporates
all mechanisms leading to linear density inhomogeneity:
nonuniform wire cross section, magnetic impurities, etc.
The weak-disorder approximation is applicable for
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j���j � ��, which gives the dimensionless measure of the
disorder strength,

� � V0=Mc
2
0 � V0=g��: (10)

For a given disorder configuration, the QPS rate (per unit
length) can be found as the imaginary part of the partition
sum of the pair,

R �
C1c4

0

g2r4
C

R; R� Im
Z dx0dx00

Lw

Z
d��0e

�SE ; (11)

where the dimensionful prefactor with the coefficient C1 �
1 incorporates the fluctuation determinant and the Jacobian
of transformation to the collective coordinates. The inte-
gration over x0, x00 is extended over the length Lw of the
wire. For large enough Lw the rate (11) is self-averaging
with respect to disorder. In this case, the effective action is
obtained by disorder averaging,

Seff � S1 �
2�c0

g
ln

�r0

rC
�

1

2
P2�2��x0 � x

0
0�; (12)

where the function

��x� � 2
Z x

0
dx0�x� x0�f�x0� (13)

is proportional to the average square of the disorder-
induced phase between the slip and antislip. [The disorder
correlator f�x� is defined after Eq. (1).] For finite-range
disorder, ��x� has a diffusive form at large distances,
jxj 
 l,

��x� � 2l1jxj; l1 �
Z 1

0
dxf�x�: (14)

For single-scale disorder, l1 � l.
According to Eqs. (12) and (14), disorder binds together

the x coordinates of the phase slip and antislip within a
pair. For the case of short-range disorder, this effect was
noted previously in Ref. [10] and was taken into account
by using a sharp � function, ��x0 � x00�, in the partition
sum. We see, however, that in general there is a finite
characteristic separation �x0 within the pair. This separa-
tion depends on both the range and the strength of the
disorder potential. As the strength of disorder increases
and the pairs become more tightly bound in the x direction,
the wire effectively becomes more and more like a dis-
sipative quantum-mechanical system with a logarithmic
interaction, lnj�0 � �00j, between the instantons—a spa-
tially extended version of the familiar resistively shunted
Josephson junction [8].

We also note that the coefficient in front of the logarithm
in Eq. (12) is proportional to the inverse impedance of the
wire viewed as two transmission lines attached to the
phase-slip region. This is consistent with the mapping
onto dissipative quantum mechanics, since plasmons are
the only source of dissipation in our present model.

Turning to the time integration in Eq. (11), we observe
that while the integral is formally divergent, the corre-
sponding imaginary part is finite and can be found by an

analytic continuation. We obtain

R �
�3=2rC
c0

Z
dxeiPx��1=2��2P2��x�

�
Er2

C

2c0jxj

�
	 J	�Ejxj=c0�

��	� 1=2�
;

(15)

where J	�z� is the Bessel function and the dimensionless
index 	 is inversely proportional to the interaction con-
stant, 	� 1=2 � �c0=g ( � K�1 in notations of Ref. [9]).
This explicit expression for the QPS rate (at T � 0) in the
plasmon-only theory in the presence of weak but finite-
ranged disorder is the main result of this work. Although
Eq. (15) was obtained assuming that disorder induces only
weak fluctuations of the density (as expressed by the weak-
disorder condition �� 1), it is nonperturbative with re-
spect to the phase fluctuations and accounts for multiple
scattering to all orders.

In the absence of disorder [� � 0] the integral in
Eq. (15) is zero for any E< c0P, consistent with the
Galilean invariance of the T � 0 state [5]. The opposite
case is when the convergence of the integral (15) is domi-
nated by disorder. In this case, the Bessel function can be
replaced by the first term of its small-argument expansion,
and the QPS rate becomes

R �
C2c

3
0

g2r3
C

�
ErC
2c0

�
2	
l1Ad; Ad �

Z dx
l1
eiPx��1=2�P2�2��x�

(16)

with C2 � �3=2C1=	��	� 1���	� 1=2�
. This limit cor-
responds to the entire momentum P being absorbed by the
disorder, with no momentum carried away by plasmons.
For weak disorder, where Eq. (16) is applicable, the di-
mensionless form factor Ad is small.

At nonzero temperature, the simplest case is T 

gE=�c0. Then, the energy released by unwinding the
supercurrent is insignificant, and instead of a single pair
(4) we can use a periodic chain of such pairs with period

 � 1=T. Properties of this chain are described in Ref. [5].
An especially simple result applies in the disorder-
dominated regime, when the spatial separation in each
pair is small, �x0 � c0=�T: for an estimate, it is sufficient
to make the replacement E! �c0T=g in Eq. (16). Then, at
	� 1, the rate of thermally assisted QPSs per unit length is

R T �
c0

r3
C

�
TrC
g

�
2	
l1Ad: (17)

The voltage across the wire is

V �
2�
e

RTLw sinh
�I
2eT

: (18)

We see that resistance becomes T independent at 	 � 1=2,
which defines the SIT point. The dimensionless measure of
QPS pair density near 	 � 1=2 is

R T�x0��0 �
l1�x0

r2
C

�
TrC
g

�
2	�1

Ad; (19)

where ��0 � 1=2T is the characteristic size of a pair in the
� direction. Thus, the density is small in the infrared at any
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	 > 1=2, and for sufficiently small Ad even at 	 � 1=2. At
	<1=2, pairs proliferate, resulting in the insulating behav-
ior. Writing the impedance of the wire as Z � 2�L=C�1=2,
where L � m�=e

2ns is the ‘‘kinetic’’ inductance per unit
length, and the factor of 2 corresponds to two transmission
lines (one on each side of the phase slip), we see that 	 �
1=2 is equivalent to Z � �=2e2 � 6:5 k�.

We now turn to discussion of the form factor Ad. The
important parameter here is �2Pl. We begin with the case
�2Pl� 1. If the stronger condition �Pl� 1 is also sat-
isfied, we can (upon integrating by parts twice) expand the
integrand in (16) to the linear order in �2. This corresponds
to the entire momentum P being absorbed in a single
scattering event. Then, Ad � ��

2=l1�
R
eiPxf�x�dx. Thus,

for Pl� 1 the form factor is universal, Ad � 2�2, while
for l * P�1 it depends on details of the correlations. For
Pl
 1, it is determined by the ordinate l0 of the singu-
larity of f�x� closest to the real axis and scales exponen-
tially, Ad / e

�Pl0 . If �Pl * 1 (but still �2Pl� 1), effects
of multiple scattering result in a correction��2P2l2 in the
exponent.

In the opposite limit, �2Pl
 1, it is the disorder that
determines convergence of the integral (16). The integral
converges at x� ��2P��1 � l, where we can replace ��x�
by its short-distance form, ��x��x2. Then, the integral be-
comes Gaussian and gives Ad � �2��1=2��Pl1��1e�1=�2�2�.
In this case the process of momentum transfer to disorder is
clearly a result of a large number of scattering events.

The nature of the crossovers between different scattering
regimes as the disorder correlation length l is increased can
be understood in a model with correlation function f�x� �
�1� x2=l2��3=2. Integration in Eq. (13) gives ��x� �
2l2	�1� x2=l2�1=2 � 1
, and the coordinate integration in
Eq. (15) can be performed explicitly,

Ad �
2�2Pl

	1� ��2Pl�2
1=2
e�

2P2l2K1�Pl	1� ��2Pl�2
1=2�:

For Pl� 1, we can use K1�z� � z�1 �O�z lnz�, which
gives the short-range limit (with some logarithmic correc-
tions due to the power-law tail of the correlation function),
while for Pl
 1, the large-argument asymptote K1�z� �
��=2z�1=2e�z can be used to restore the other discussed
scattering regimes.

Our discussion of Ad has so far assumed that the scat-
tering is characterized by a single distance scale, l, which
may not necessarily be the case. For example, a model
correlation function f�x� � e�jxj=l has a singularity (de-
rivative discontinuity) at the real axis, which gives distance
l0 � 0, and the exact integration in Eq. (16) shows that Ad

is independent of P for the entire range �Pl� 1.
Conversely, for a correlation function with the power-law
long-distance tail, f�x� / x�m, 0<m< 1, the distance l1
is infinite, and instead of Eq. (14) one obtains superdiffu-
sive form

��x� �
l2�

2�m

�
x
l�

�
2�m

; x
 l�;

where l� is a convenient distance scale. Then, perturbation
theory breaks down already for arbitrarily weak disorder;
we get ln�Ad� / �	�

2�Pl��
m
�m=�1�m�.

In conclusion, the plasmon-only theory provides a useful
laboratory for studying the effect of disorder on QPSs from
first principles. We have computed the QPS rate for general
finite-range weak disorder; as seen from Eq. (15), disorder
drives the system into the universality class of dissipative
quantum mechanics, with the dissipative coefficient deter-
mined by the wave impedance Z of the wire. From an
extension of this result to finite temperatures [Eq. (17)]
we have found a superconductor-insulator transition at
Z � �=2e2. We see no reason why the universality class
should change when resistive effects at the QPS core are
taken into account. Rather, we expect that it will remain the
same, but the dissipative coefficient will now be deter-
mined by the total impedance, including both plasmon
and resistive effects.
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