2,364 research outputs found

    Time takes space: selective effects of multitasking on concurrent spatial processing.

    Get PDF
    Many everyday activities require coordination and monitoring of complex relations of future goals and deadlines. Cognitive offloading may provide an efficient strategy for reducing control demands by representing future goals and deadlines as a pattern of spatial relations. We tested the hypothesis that multiple-task monitoring involves time-to-space transformational processes, and that these spatial effects are selective with greater demands on coordinate (metric) than categorical (nonmetric) spatial relation processing. Participants completed a multitasking session in which they monitored four series of deadlines, running on different time scales, while making concurrent coordinate or categorical spatial judgments. We expected and found that multitasking taxes concurrent coordinate, but not categorical, spatial processing. Furthermore, males showed a better multitasking performance than females. These findings provide novel experimental evidence for the hypothesis that efficient multitasking involves metric relational processing

    Women in radiology: gender diversity is not a metric—it is a tool for excellence

    Get PDF
    Abstract: Women in Focus: Be Inspired was a unique programme held at the 2019 European Congress of Radiology that was structured to address a range of topics related to gender and healthcare, including leadership, mentoring and the generational progression of women in medicine. In most countries, women constitute substantially fewer than half of radiologists in academia or private practice despite frequently accounting for at least half of medical school enrolees. Furthermore, the proportion of women decreases at higher academic ranks and levels of leadership, a phenomenon which has been referred to as a “leaky pipeline”. Gender diversity in the radiologic workplace, including in academic and leadership positions, is important for the present and future success of the field. It is a tool for excellence that helps to optimize patient care and research; moreover, it is essential to overcome the current shortage of radiologists. This article reviews the current state of gender diversity in academic and leadership positions in radiology internationally and explores a wide range of potential reasons for gender disparities, including the lack of role models and mentorship, unconscious bias and generational changes in attitudes about the desirability of leadership positions. Strategies for both individuals and institutions to proactively increase the representation of women in academic and leadership positions are suggested. Key Points: • Gender-diverse teams perform better. Thus, gender diversity throughout the radiologic workplace, including in leadership positions, is important for the current and future success of the field. • Though women now make up roughly half of medical students, they remain underrepresented among radiology trainees, faculty and leaders. • Factors leading to the gender gap in academia and leadership positions in Radiology include a lack of role models and mentors, unconscious biases, other societal barriers and generational changes

    Time decay of the remanent magnetization in the ±J\pm J spin glass model at T=0

    Full text link
    Using the zero-temperature Metropolis dynamics, the time decay of the remanent magnetization in the ±J\pm J Edward-Anderson spin glass model with a uniform random distribution of ferromagnetic and antiferromagnetic interactions has been investigated. Starting from the saturation, the magnetization per spin mm reveals a slow decrease with time, which can be approximated by a power law:m(t)=m+(ta0)a1m(t)=m_{\infty}+ ({t\over a_{0}})^{a_{1}}, a1<0a_{1} < 0. Moreover, its relaxation does not lead it into one of the ground states, and therefore the system is trapped in metastable isoenergetic microstates remaining magnetized. Such behaviour is discussed in terms of a random walk the system performs on its available configuration space.Comment: 9 pages, 3 figure

    Discrimination of biofilm samples using pattern recognition techniques

    Get PDF
    Biofilms are complex aggregates formed by microorganisms such as bacteria, fungi and algae, which grow at the interfaces between water and natural or artificial materials. They are actively involved in processes of sorption and desorption of metal ions in water and reflect the environmental conditions in the recent past. Therefore, biofilms can be used as bioindicators of water quality. The goal of this study was to determine whether the biofilms, developed in different aquatic systems, could be successfully discriminated using data on their elemental compositions. Biofilms were grown on natural or polycarbonate materials in flowing water, standing water and seawater bodies. Using an unsupervised technique such as principal component analysis (PCA) and several supervised methods like classification and regression trees (CART), discriminant partial least squares regression (DPLS) and uninformative variable elimination–DPLS (UVE-DPLS), we could confirm the uniqueness of sea biofilms and make a distinction between flowing water and standing water biofilms. The CART, DPLS and UVE-DPLS discriminant models were validated with an independent test set selected either by the Kennard and Stone method or the duplex algorithm. The best model was obtained from CART with 100% correct classification rate for the test set designed by the Kennard and Stone algorithm. With CART, one variable describing the Mg content in the biofilm water phase was found to be important for the discrimination of flowing water and standing water biofilms
    corecore