38 research outputs found

    СОГЛАСОВАНИЕ ПАРАМЕТРОВ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И ЭЛЕКТРОМЕХАНИЧЕСКОЙ СИЛОВОЙ ПЕРЕДАЧИ КОЛЕСНОГО ТРАКТОРА

    Get PDF
    The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit. Рассмотрена бесступенчатая электромеханическая силовая передача колесного трактора. Предложена методика согласования параметров электромеханической трансмиссии с двигателем внутреннего сгорания для их оптимальной работы в составе силового агрегата колесного трактора

    Sized Types for low-level Quantum Metaprogramming

    Full text link
    One of the most fundamental aspects of quantum circuit design is the concept of families of circuits parametrized by an instance size. As in classical programming, metaprogramming allows the programmer to write entire families of circuits simultaneously, an ability which is of particular importance in the context of quantum computing as algorithms frequently use arithmetic over non-standard word lengths. In this work, we introduce metaQASM, a typed extension of the openQASM language supporting the metaprogramming of circuit families. Our language and type system, built around a lightweight implementation of sized types, supports subtyping over register sizes and is moreover type-safe. In particular, we prove that our system is strongly normalizing, and as such any well-typed metaQASM program can be statically unrolled into a finite circuit.Comment: Presented at Reversible Computation 2019. Final authenticated publication is available online at https://doi.org/10.1007/978-3-030-21500-2_

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    Methods for classically simulating noisy networked quantum architectures

    Get PDF
    As research on building scalable quantum computers advances, it is important to be able to certify their correctness. Due to the exponential hardness of classically simulating quantum computation, straight-forward verification through classical simulation fails. However, we can classically simulate small scale quantum computations and hence we are able to test that devices behave as expected in this domain. This constitutes the first step towards obtaining confidence in the anticipated quantum-advantage when we extend to scales which can no longer be simulated. Realistic devices have restrictions due to their architecture and limitations due to physical imperfections and noise. Here we extend the usual ideal simulations by considering those effects. We provide a general methodology for constructing realistic simulations emulating the physical system which will both provide a benchmark for realistic devices, and guide experimental research in the quest for quantum-advantage. We exemplify our methodology by simulating a networked architecture and corresponding noise-model; in particular that of the device developed in the Networked Quantum Information Technologies Hub (NQIT). For our simulations we use, with suitable modification, the classical simulator of of Bravyi and Gosset. The specific problems considered belong to the class of Instantaneous Quantum Polynomial-time (IQP) problems, a class believed to be hard for classical computing devices, and to be a promising candidate for the first demonstration of quantum-advantage. We first consider a subclass of IQP, defined by Bermejo-Vega et al, involving two-dimensional dynamical quantum simulators, before moving to more general instances of IQP, but which are still restricted to the architecture of NQIT.Comment: 55 pages, 16 figure

    PARAMETER MATCHING OF INTERNAL COMBUSTION ENGINE AND ELECTROMECHANICAL POWER TRAIN OF WHEEL TRACTOR

    No full text
    The paper considers stepless electromechanical power train of a wheel tractor. Methodology for parameter matching of electromechanical transmission and internal combustion engine for their optimum performance as part of a power wheel tractor unit
    corecore